Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark A. Eiteman is active.

Publication


Featured researches published by Mark A. Eiteman.


Applied and Environmental Microbiology | 2002

Effects of Growth Mode and Pyruvate Carboxylase on Succinic Acid Production by Metabolically Engineered Strains of Escherichia coli

Goutham N. Vemuri; Mark A. Eiteman; Elliot Altman

ABSTRACT Escherichia coli NZN111, which lacks activities for pyruvate-formate lyase and lactate dehydrogenase, and AFP111, a derivative which contains an additional mutation in ptsG (a gene encoding an enzyme of the glucose phophotransferase system), accumulate significant levels of succinic acid (succinate) under anaerobic conditions. Plasmid pTrc99A-pyc, which expresses the Rhizobium etli pyruvate carboxylase enzyme, was introduced into both strains. We compared growth, substrate consumption, product formation, and activities of seven key enzymes (acetate kinase, fumarate reductase, glucokinase, isocitrate dehydrogenase, isocitrate lyase, phosphoenolpyruvate carboxylase, and pyruvate carboxylase) from glucose for NZN111, NZN111/pTrc99A-pyc, AFP111, and AFP111/pTrc99A-pyc under both exclusively anaerobic and dual-phase conditions (an aerobic growth phase followed by an anaerobic production phase). The highest succinate mass yield was attained with AFP111/pTrc99A-pyc under dual-phase conditions with low pyruvate carboxylase activity. Dual-phase conditions led to significant isocitrate lyase activity in both NZN111 and AFP111, while under exclusively anaerobic conditions, an absence of isocitrate lyase activity resulted in significant pyruvate accumulation. Enzyme assays indicated that under dual-phase conditions, carbon flows not only through the reductive arm of the tricarboxylic acid cycle for succinate generation but also through the glyoxylate shunt and thus provides the cells with metabolic flexibility in the formation of succinate. Significant glucokinase activity in AFP111 compared to NZN111 similarly permits increased metabolic flexibility of AFP111. The differences between the strains and the benefit of pyruvate carboxylase under both exclusively anaerobic and dual-phase conditions are discussed in light of the cellular constraint for a redox balance.


Journal of Industrial Microbiology & Biotechnology | 2002

Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions

Goutham N. Vemuri; Mark A. Eiteman; Elliot Altman

We examined succinic acid production in Escherichia coli AFP111 using dual-phase fermentations, which comprise an initial aerobic growth phase followed by an anaerobic production phase. AFP111 has mutations in the pfl, ldhA, and ptsG genes, and we additionally transformed this strain with the pyc gene (AFP111/pTrc99A-pyc) to provide metabolic flexibility at the pyruvate node. Aerobic fermentations with these two strains were completed to catalog physiological states during aerobic growth that might influence succinate generation in the anaerobic phase. Activities of six key enzymes were also determined for these aerobic fermentations. From these results, six transition times based on physiological states were selected for studying dual-phase fermentations. The final succinate yield and productivity depend greatly on the physiological state of the cells at the time of transition. Using the best transition time, fermentations achieved a final succinic acid concentration of 99.2 g/l with an overall yield of 110% and productivity of 1.3 g/l h. Journal of Industrial Microbiology & Biotechnology (2002) 28, 325–332 DOI: 10.1038/sj/jim/7000250


Proceedings of the National Academy of Sciences of the United States of America | 2007

Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae

Goutham N. Vemuri; Mark A. Eiteman; J.E McEwen; Lisbeth Olsson; Jens Nielsen

Respiratory metabolism plays an important role in energy production in the form of ATP in all aerobically growing cells. However, a limitation in respiratory capacity results in overflow metabolism, leading to the formation of byproducts, a phenomenon known as “overflow metabolism” or “the Crabtree effect.” The yeast Saccharomyces cerevisiae has served as an important model organism for studying the Crabtree effect. When subjected to increasing glycolytic fluxes under aerobic conditions, there is a threshold value of the glucose uptake rate at which the metabolism shifts from purely respiratory to mixed respiratory and fermentative. It is well known that glucose repression of respiratory pathways occurs at high glycolytic fluxes, resulting in a decrease in respiratory capacity. Despite many years of detailed studies on this subject, it is not known whether the onset of the Crabtree effect is due to limited respiratory capacity or is caused by glucose-mediated repression of respiration. When respiration in S. cerevisiae was increased by introducing a heterologous alternative oxidase, we observed reduced aerobic ethanol formation. In contrast, increasing nonrespiratory NADH oxidation by overexpression of a water-forming NADH oxidase reduced aerobic glycerol formation. The metabolic response to elevated alternative oxidase occurred predominantly in the mitochondria, whereas NADH oxidase affected genes that catalyze cytosolic reactions. Moreover, NADH oxidase restored the deficiency of cytosolic NADH dehydrogenases in S. cerevisiae. These results indicate that NADH oxidase localizes in the cytosol, whereas alternative oxidase is directed to the mitochondria.


Applied and Environmental Microbiology | 2006

Overflow Metabolism in Escherichia coli during Steady-State Growth: Transcriptional Regulation and Effect of the Redox Ratio

Goutham N. Vemuri; Elliot Altman; Dipen Sangurdekar; Arkady B. Khodursky; Mark A. Eiteman

ABSTRACT Overflow metabolism in the form of aerobic acetate excretion by Escherichia coli is an important physiological characteristic of this common industrial microorganism. Although acetate formation occurs under conditions of high glucose consumption, the genetic mechanisms that trigger this phenomenon are not clearly understood. We report on the role of the NADH/NAD ratio (redox ratio) in overflow metabolism. We modulated the redox ratio in E. coli through the expression of Streptococcus pneumoniae (water-forming) NADH oxidase. Using steady-state chemostat cultures, we demonstrated a strong correlation between acetate formation and this redox ratio. We furthermore completed genome-wide transcription analyses of a control E. coli strain and an E. coli strain overexpressing NADH oxidase. The transcription results showed that in the control strain, several genes involved in the tricarboxylic acid (TCA) cycle and respiration were repressed as the glucose consumption rate increased. Moreover, the relative repression of these genes was alleviated by expression of NADH oxidase and the resulting reduced redox ratio. Analysis of a promoter binding site upstream of the genes which correlated with redox ratio revealed a degenerate sequence with strong homology with the binding site for ArcA. Deletion of arcA resulted in acetate reduction and increased the biomass yield due to the increased capacities of the TCA cycle and respiration. Acetate formation was completely eliminated by reducing the redox ratio through expression of NADH oxidase in the arcA mutant, even at a very high glucose consumption rate. The results provide a basis for studying new regulatory mechanisms prevalent at reduced NADH/NAD ratios, as well as for designing more efficient bioprocesses.


Applied and Environmental Microbiology | 2000

Metabolic Analysis of Escherichia coli in the Presence and Absence of the Carboxylating Enzymes Phosphoenolpyruvate Carboxylase and Pyruvate Carboxylase

R. R. Gokarn; Mark A. Eiteman; Elliot Altman

ABSTRACT Fermentation patterns of Escherichia coli with and without the phosphoenolpyruvate carboxylase (PPC) and pyruvate carboxylase (PYC) enzymes were compared under anaerobic conditions with glucose as a carbon source. Time profiles of glucose and fermentation product concentrations were determined and used to calculate metabolic fluxes through central carbon pathways during exponential cell growth. The presence of the Rhizobium etli pyc gene in E. coli (JCL1242/pTrc99A-pyc) restored the succinate producing ability of E. coli ppc null mutants (JCL1242), with PYC competing favorably with both pyruvate formate lyase and lactate dehydrogenase. Succinate formation was slightly greater by JCL1242/pTrc99A-pyc than by cells which overproduced PPC (JCL1242/pPC201, ppc+), even though PPC activity in cell extracts of JCL1242/pPC201 (ppc+) was 40-fold greater than PYC activity in extracts of JCL1242/pTrc99a-pyc. Flux calculations indicate that during anaerobic metabolism the pyc+strain had a 34% greater specific glucose consumption rate, a 37% greater specific rate of ATP formation, and a 6% greater specific growth rate compared to the ppc+ strain. In light of the important position of pyruvate at the juncture of NADH-generating pathways and NADH-dissimilating branches, the results show that when PPC or PYC is expressed, the metabolic network adapts by altering the flux to lactate and the molar ratio of ethanol to acetate formation.


Journal of Biological Engineering | 2008

A co-fermentation strategy to consume sugar mixtures effectively

Mark A. Eiteman; Sarah A. Lee; Elliot Altman

We report a new approach for the simultaneous conversion of xylose and glucose sugar mixtures into products by fermentation. The process simultaneously uses two substrate-selective strains of Escherichia coli, one which is unable to consume glucose and one which is unable to consume xylose. The xylose-selective (glucose deficient) strain E. coli ZSC113 has mutations in the glk, ptsG and manZ genes while the glucose-selective (xylose deficient) strain E. coli ALS1008 has a mutation in the xylA gene. By combining these two strains in a single process, xylose and glucose are consumed more quickly than by a single-organism approach. Moreover, we demonstrate that the process is able to adapt to changing concentrations of these two sugars, and therefore holds promise for the conversion of variable sugar feed streams, such as lignocellulosic hydrolysates.


Applied Microbiology and Biotechnology | 2001

The physiological effects and metabolic alterations caused by the expression of Rhizobium etli pyruvate carboxylase in Escherichia coli

Ravi R. Gokarn; J. D. Evans; Jennifer R. Walker; Scott A. Martin; Mark A. Eiteman; Elliot Altman

Abstract. Oxaloacetate (OAA) plays an important role in the tricarboxylic acid cycle and for the biosynthesis of a variety of cellular compounds. Some microorganisms, such as Rhizobium etli and Corynebacterium glutamicum, are able to synthesize OAA during growth on glucose via either of the enzymes pyruvate carboxylase (PYC) or phosphoenolpyruvate carboxylase (PPC). Other microorganisms, including Escherichia coli, synthesize OAA during growth on glucose only via PPC because they lack PYC. In this study we have examined the effect that the R. etli PYC has on the physiology of E. coli. The expressed R. etli PYC was biotinylated by the native biotin holoenzyme synthase of E. coli and displayed kinetic properties similar to those reported for α4 PYC enzymes from other sources. R. etli PYC was able to restore the growth of an E. coli ppc null mutant in minimal glucose medium, and PYC expression caused increased carbon flow towards OAA in wild-type E. coli cells without affecting the glucose uptake rate or the growth rate. During aerobic glucose metabolism, expression of PYC resulted in a 56% increase in biomass yield and a 43% decrease in acetate yield. During anaerobic glucose metabolism, expression of PYC caused a 2.7-fold increase in succinate concentration, making it the major product by mass. The increase in succinate came mainly at the expense of lactate formation. However, in a mutant lacking lactate dehydrogenase activity, expression of PYC resulted in only a 1.7-fold increase in succinate concentration. The decreased enhancement of succinate formation in the ldh mutant was hypothesized to be due to accumulation of pyruvate and NADH, metabolites that affect the interconversion of the active and inactive form of the enzyme pyruvate formate-lyase.


Biotechnology Letters | 1998

Expression of Pyruvate Carboxylase Enhances Succinate Production in Escherichia coli without Affecting Glucose Uptake

Ravi R. Gokarn; Mark A. Eiteman; Elliot Altman

Plasmids carrying the pyc gene from Rhizobium etli were used to express pyruvate carboxylase in Escherichia coli. Results of batch fermentations of a wild-type E. coli (MG1655), this wild-type with the pUC18 cloning/expression vector (MG1655/pUC18) and this wild-type carrying the pyc gene (MG1655/pUC18-pyc) were compared in glucose-limited medium. The results indicate that the final succinate concentration upon complete glucose utilization was increased from 1.18 g/L to 1.77 g/L by the expression of pyc, while the final succinate concentration in MG1655/pUC18 was slightly lower than in the parent strain. This increased succinate concentration came at the expense of lactate synthesis, whose final concentration decreased from 2.33 g/L to 1.88 g/L. The expression of pyc did not affect the maximum glucose uptake (2.17 g/L⋅h for MG1655 versus 2.47 g/L⋅h for MG1655/pUC18-pyc), but did decrease the maximum rate of cell mass production (0.213 g/L⋅h for MG1655, 0.169 g/L⋅h for MG1655/pUC18 and 0.199 g/L⋅h for MG1655/pUC18-pyc).


Applied and Environmental Microbiology | 2007

Homolactate Fermentation by Metabolically Engineered Escherichia coli Strains

Yihui Zhu; Mark A. Eiteman; K. DeWitt; Elliot Altman

ABSTRACT We report the homofermentative production of lactate in Escherichia coli strains containing mutations in the aceEF, pfl, poxB, and pps genes, which encode the pyruvate dehydrogenase complex, pyruvate formate lyase, pyruvate oxidase, and phosphoenolpyruvate synthase, respectively. The process uses a defined medium and two distinct fermentation phases: aerobic growth to an optical density of about 30, followed by nongrowth, anaerobic production. Strain YYC202 (aceEF pfl poxB pps) generated 90 g/liter lactate in 16 h during the anaerobic phase (with a yield of 0.95 g/g and a productivity of 5.6 g/liter · h). Ca(OH)2 was found to be superior to NaOH for pH control, and interestingly, significant succinate also accumulated (over 7 g/liter) despite the use of N2 for maintaining anaerobic conditions. Strain ALS961 (YYC202 ppc) prevented succinate accumulation, but growth was very poor. Strain ALS974 (YYC202 frdABCD) reduced succinate formation by 70% to less than 3 g/liter. 13C nuclear magnetic resonance analysis using uniformly labeled acetate demonstrated that succinate formation by ALS974 was biochemically derived from acetate in the medium. The absence of uniformly labeled succinate, however, demonstrated that glyoxylate did not reenter the tricarboxylic acid cycle via oxaloacetate. By minimizing the residual acetate at the time that the production phase commenced, the process with ALS974 achieved 138 g/liter lactate (1.55 M, 97% of the carbon products), with a yield of 0.99 g/g and a productivity of 6.3 g/liter · h during the anaerobic phase.


Bioresource Technology | 1996

Physical properties of low molecular weight triglycerides for the development of bio-diesel fuel models

John W. Goodrum; Mark A. Eiteman

To aid the improvement of fuel properties of oils, basic physical and combustion-related properties of low molecular weight triglycerides are described. These properties include density, viscosity, heat capacity, surface tension and vapor pressure. Fuel injection atomization factors were determined for these triglycerides. Properties of tributyrin (C4:0), tricaproin (C6:0), tricaprylin (C8:0) and tricaprin (C10:0) indicate that these triglycerides are potential components in future diesel fuels derived from plant oils.

Collaboration


Dive into the Mark A. Eiteman's collaboration.

Top Co-Authors

Avatar

Elliot Altman

Middle Tennessee State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronni Altman

Middle Tennessee State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tian Xia

University of Georgia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacob Crigler

Middle Tennessee State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge