Mark A. Katz
Centers for Disease Control and Prevention
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark A. Katz.
The Lancet | 2011
Harish Nair; W. Abdullah Brooks; Mark A. Katz; Anna Roca; James A. Berkley; Shabir A. Madhi; James M. Simmerman; Aubree Gordon; Masatoki Sato; Stephen R. C. Howie; Anand Krishnan; Maurice Ope; Kim A. Lindblade; Phyllis Carosone-Link; Marilla Lucero; Walter Onalo Ochieng; Laurie Kamimoto; Erica Dueger; Niranjan Bhat; Sirenda Vong; Evropi Theodoratou; Malinee Chittaganpitch; Osaretin Chimah; Angel Balmaseda; Philippe Buchy; Eva Harris; Valerie Evans; Masahiko Katayose; Bharti Gaur; Cristina O'Callaghan-Gordo
BACKGROUND The global burden of disease attributable to seasonal influenza virus in children is unknown. We aimed to estimate the global incidence of and mortality from lower respiratory infections associated with influenza in children younger than 5 years. METHODS We estimated the incidence of influenza episodes, influenza-associated acute lower respiratory infections (ALRI), and influenza-associated severe ALRI in children younger than 5 years, stratified by age, with data from a systematic review of studies published between Jan 1, 1995, and Oct 31, 2010, and 16 unpublished population-based studies. We applied these incidence estimates to global population estimates for 2008 to calculate estimates for that year. We estimated possible bounds for influenza-associated ALRI mortality by combining incidence estimates with case fatality ratios from hospital-based reports and identifying studies with population-based data for influenza seasonality and monthly ALRI mortality. FINDINGS We identified 43 suitable studies, with data for around 8 million children. We estimated that, in 2008, 90 million (95% CI 49-162 million) new cases of influenza (data from nine studies), 20 million (13-32 million) cases of influenza-associated ALRI (13% of all cases of paediatric ALRI; data from six studies), and 1 million (1-2 million) cases of influenza-associated severe ALRI (7% of cases of all severe paediatric ALRI; data from 39 studies) occurred worldwide in children younger than 5 years. We estimated there were 28,000-111,500 deaths in children younger than 5 years attributable to influenza-associated ALRI in 2008, with 99% of these deaths occurring in developing countries. Incidence and mortality varied substantially from year to year in any one setting. INTERPRETATION Influenza is a common pathogen identified in children with ALRI and results in a substantial burden on health services worldwide. Sufficient data to precisely estimate the role of influenza in childhood mortality from ALRI are not available. FUNDING WHO; Bill & Melinda Gates Foundation.
American Journal of Tropical Medicine and Hygiene | 2010
Amwayi S. Anyangu; L. Hannah Gould; Shahnaaz K. Sharif; Patrick M. Nguku; Jared Omolo; David Mutonga; Carol Y. Rao; Edith R. Lederman; David Schnabel; Janusz T. Paweska; Mark A. Katz; Allen W. Hightower; M. Kariuki Njenga; Daniel R. Feikin; Robert F. Breiman
A large Rift Valley fever (RVF) outbreak occurred in Kenya from December 2006 to March 2007. We conducted a study to define risk factors associated with infection and severe disease. A total of 861 individuals from 424 households were enrolled. Two hundred and two participants (23%) had serologic evidence of acute RVF infection. Of these, 52 (26%) had severe RVF disease characterized by hemorrhagic manifestations or death. Independent risk factors for acute RVF infection were consuming or handling products from sick animals (odds ratio [OR] = 2.53, 95% confidence interval [CI] = 1.78-3.61, population attributable risk percentage [PAR%] = 19%) and being a herds person (OR 1.77, 95% CI = 1.20-2.63, PAR% = 11%). Touching an aborted animal fetus was associated with severe RVF disease (OR = 3.83, 95% CI = 1.68-9.07, PAR% = 14%). Consuming or handling products from sick animals was associated with death (OR = 3.67, 95% CI = 1.07-12.64, PAR% = 47%). Exposures related to animal contact were associated with acute RVF infection, whereas exposures to mosquitoes were not independent risk factors.
The Journal of Infectious Diseases | 2012
Jennifer Michalove Radin; Mark A. Katz; Stefano Tempia; Ndahwouh Talla Nzussouo; Richard Davis; Jazmin Duque; Adebayo Adedeji; Michael Adjabeng; William Ampofo; Workenesh Ayele; Barnabas Bakamutumaho; Amal Barakat; Adam L. Cohen; Cheryl Cohen; Ibrahim Dalhatu; Coulibaly Daouda; Erica Dueger; Moisés Francisco; Jean-Michel Heraud; Daddi Jima; Alice Kabanda; Hervé Kadjo; Amr Kandeel; Stomy Karhemere Bi Shamamba; Francis Kasolo; Karl C. Kronmann; Mazyanga Liwewe; Julius Julian Lutwama; Miriam Matonya; Vida Mmbaga
BACKGROUND In response to the potential threat of an influenza pandemic, several international institutions and governments, in partnership with African countries, invested in the development of epidemiologic and laboratory influenza surveillance capacity in Africa and the African Network of Influenza Surveillance and Epidemiology (ANISE) was formed. METHODS We used a standardized form to collect information on influenza surveillance system characteristics, the number and percent of influenza-positive patients with influenza-like illness (ILI), or severe acute respiratory infection (SARI) and virologic data from countries participating in ANISE. RESULTS Between 2006 and 2010, the number of ILI and SARI sites in 15 African countries increased from 21 to 127 and from 2 to 98, respectively. Children 0-4 years accounted for 48% of all ILI and SARI cases of which 22% and 10%, respectively, were positive for influenza. Influenza peaks were generally discernible in North and South Africa. Substantial cocirculation of influenza A and B occurred most years. CONCLUSIONS Influenza is a major cause of respiratory illness in Africa, especially in children. Further strengthening influenza surveillance, along with conducting special studies on influenza burden, cost of illness, and role of other respiratory pathogens will help detect novel influenza viruses and inform and develop targeted influenza prevention policy decisions in the region.
PLOS ONE | 2012
Daniel R. Feikin; M. Kariuki Njenga; Godfrey Bigogo; Barrack Aura; George Aol; Allan Audi; Geoffrey Jagero; Peter Ochieng Muluare; Stella Gikunju; Leonard Nderitu; Amanda Balish; Jonas M. Winchell; Eileen Schneider; Dean D. Erdman; M. Steven Oberste; Mark A. Katz; Robert F. Breiman
Background Few comprehensive data exist on disease incidence for specific etiologies of acute respiratory illness (ARI) in older children and adults in Africa. Methodology/Principal Findings From March 1, 2007, to February 28, 2010, among a surveillance population of 21,420 persons >5 years old in rural western Kenya, we collected blood for culture and malaria smears, nasopharyngeal and oropharyngeal swabs for quantitative real-time PCR for ten viruses and three atypical bacteria, and urine for pneumococcal antigen testing on outpatients and inpatients meeting a ARI case definition (cough or difficulty breathing or chest pain and temperature >38.0°C or oxygen saturation <90% or hospitalization). We also collected swabs from asymptomatic controls, from which we calculated pathogen-attributable fractions, adjusting for age, season, and HIV-status, in logistic regression. We calculated incidence by pathogen, adjusting for health-seeking for ARI and pathogen-attributable fractions. Among 3,406 ARI patients >5 years old (adjusted annual incidence 12.0 per 100 person-years), influenza A virus was the most common virus (22% overall; 11% inpatients, 27% outpatients) and Streptococcus pneumoniae was the most common bacteria (16% overall; 23% inpatients, 14% outpatients), yielding annual incidences of 2.6 and 1.7 episodes per 100 person-years, respectively. Influenza A virus, influenza B virus, respiratory syncytial virus (RSV) and human metapneumovirus were more prevalent in swabs among cases (22%, 6%, 8% and 5%, respectively) than controls. Adenovirus, parainfluenza viruses, rhinovirus/enterovirus, parechovirus, and Mycoplasma pneumoniae were not more prevalent among cases than controls. Pneumococcus and non-typhi Salmonella were more prevalent among HIV-infected adults, but prevalence of viruses was similar among HIV-infected and HIV-negative individuals. ARI incidence was highest during peak malaria season. Conclusions/Signficance Vaccination against influenza and pneumococcus (by potential herd immunity from childhood vaccination or of HIV-infected adults) might prevent much of the substantial ARI incidence among persons >5 years old in similar rural African settings.
The Journal of Infectious Diseases | 2007
Justin R. Ortiz; Mark A. Katz; Mohammed N. Mahmoud; Saidu Ahmed; Shehu I. Bawa; Eileen C. Farnon; Mohammed B. Sarki; A. Nasidi; Muhammed S. Ado; Abdulrazak H. Yahaya; Tony M. Joannis; Raphael S. Akpan; John Vertefeuille; Jenna Achenbach; Robert F. Breiman; Jacqueline M. Katz; Timothy M. Uyeki; Sadiq S. Wali
BACKGROUND In February 2006, poultry outbreaks of highly pathogenic avian influenza A (H5N1) virus were confirmed in Nigeria. A serosurvey was conducted to assess H5N1 transmission among poultry workers and laboratory workers in Nigeria. METHODS From 21 March through 3 April 2006, 295 poultry workers and 25 laboratory workers with suspected exposure to H5N1 virus were administered a questionnaire to assess H5N1 exposures, medical history, and health care utilization. A serum specimen was collected from participants to test for H5N1 neutralizing antibodies by microneutralization assay. RESULTS The 295 poultry workers reported a median of 14 days of exposure to suspected or confirmed H5N1-infected poultry without antiviral chemoprophylaxis and with minimal personal protective equipment. Among 25 laboratory workers, all handled poultry specimens with suspected H5N1 virus infection. All participants tested negative for H5N1 neutralizing antibodies. CONCLUSIONS Despite widespread exposure to poultry likely infected with H5N1 virus, no serological evidence of H5N1 virus infection was identified among participants. Continued surveillance for H5N1 cases in humans and further seroprevalence investigations are needed to assess the risk of avian-to-human transmission, given that H5N1 viruses continue to circulate and evolve among poultry.
PLOS ONE | 2011
Curi Kim; Jamal Ahmed; Rachel B. Eidex; Raymond Nyoka; Lilian W. Waiboci; Dean D. Erdman; Adan Tepo; Abdirahman Mahamud; Wamburu Kabura; Margaret Nguhi; Philip Muthoka; Wagacha Burton; Robert F. Breiman; M. Kariuki Njenga; Mark A. Katz
Background Many acute respiratory illness surveillance systems collect and test nasopharyngeal (NP) and/or oropharyngeal (OP) swab specimens, yet there are few studies assessing the relative measures of performance for NP versus OP specimens. Methods We collected paired NP and OP swabs separately from pediatric and adult patients with influenza-like illness or severe acute respiratory illness at two respiratory surveillance sites in Kenya. The specimens were tested for eight respiratory viruses by real-time reverse transcription-polymerase chain reaction (qRT-PCR). Positivity for a specific virus was defined as detection of viral nucleic acid in either swab. Results Of 2,331 paired NP/OP specimens, 1,402 (60.1%) were positive for at least one virus, and 393 (16.9%) were positive for more than one virus. Overall, OP swabs were significantly more sensitive than NP swabs for adenovirus (72.4% vs. 57.6%, p<0.01) and 2009 pandemic influenza A (H1N1) virus (91.2% vs. 70.4%, p<0.01). NP specimens were more sensitive for influenza B virus (83.3% vs. 61.5%, p = 0.02), parainfluenza virus 2 (85.7%, vs. 39.3%, p<0.01), and parainfluenza virus 3 (83.9% vs. 67.4%, p<0.01). The two methods did not differ significantly for human metapneumovirus, influenza A (H3N2) virus, parainfluenza virus 1, or respiratory syncytial virus. Conclusions The sensitivities were variable among the eight viruses tested; neither specimen was consistently more effective than the other. For respiratory disease surveillance programs using qRT-PCR that aim to maximize sensitivity for a large number of viruses, collecting combined NP and OP specimens would be the most effective approach.
Pediatric Infectious Disease Journal | 2013
Daniel R. Feikin; M. Kariuki Njenga; Godfrey Bigogo; Barrack Aura; George Aol; Allan Audi; Geoffrey Jagero; Peter Ochieng Muluare; Stella Gikunju; Leonard Nderitu; Jonas M. Winchell; Eileen Schneider; Dean D. Erdman; M. Steven Oberste; Mark A. Katz; Robert F. Breiman
Background: Few comprehensive data exist on the etiology of severe acute respiratory illness (SARI) among African children. Methods: From March 1, 2007 to February 28, 2010, we collected blood for culture and nasopharyngeal and oropharyngeal swabs for real-time quantitative polymerase chain reaction for 10 viruses and 3 atypical bacteria among children aged <5 years with SARI, defined as World Health Organization–classified severe or very severe pneumonia or oxygen saturation <90%, who visited a clinic in rural western Kenya. We collected swabs from controls without febrile or respiratory symptoms. We calculated odds ratios for infection among cases, adjusting for age and season in logistic regression. We calculated SARI incidence, adjusting for healthcare seeking for SARI in the community. Results: Two thousand nine hundred seventy-three SARI cases were identified (54% inpatient, 46% outpatient), yielding an adjusted incidence of 56 cases per 100 person-years. A pathogen was detected in 3.3% of noncontaminated blood cultures; non-typhi Salmonella (1.9%) and Streptococcus pneumoniae (0.7%) predominated. A pathogen was detected in 84% of nasopharyngeal/oropharyngeal specimens, the most common being rhino/enterovirus (50%), respiratory syncytial virus (RSV, 22%), adenovirus (16%) and influenza viruses (8%). Only RSV and influenza viruses were found more commonly among cases than controls (odds ratio 2.9, 95% confidence interval: 1.3–6.7 and odds ratio 4.8, 95% confidence interval: 1.1–21, respectively). Incidence of RSV, influenza viruses and S. pneumoniae were 7.1, 5.8 and 0.04 cases per 100 person-years, respectively. Conclusions: Among Kenyan children with SARI, RSV and influenza virus are the most likely viral causes and pneumococcus the most likely bacterial cause. Contemporaneous controls are important for interpreting upper respiratory tract specimens.
BMC Infectious Diseases | 2012
Jamal Ahmed; Mark A. Katz; Eric Auko; M. Kariuki Njenga; Michelle Weinberg; Bryan K. Kapella; Heather Burke; Raymond Nyoka; Anthony Gichangi; Lilian W. Waiboci; Abdirahman Mahamud; Mohamed Qassim; Babu Swai; Burton Wagacha; David Mutonga; Margaret Nguhi; Robert F. Breiman; Rachel B. Eidex
BackgroundRefugees are at risk for poor outcomes from acute respiratory infections (ARI) because of overcrowding, suboptimal living conditions, and malnutrition. We implemented surveillance for respiratory viruses in Dadaab and Kakuma refugee camps in Kenya to characterize their role in the epidemiology of ARI among refugees.MethodsFrom 1 September 2007 through 31 August 2010, we obtained nasopharyngeal (NP) and oropharyngeal (OP) specimens from patients with influenza-like illness (ILI) or severe acute respiratory infections (SARI) and tested them by RT-PCR for adenovirus (AdV), respiratory syncytial virus (RSV), human metapneumovirus (hMPV), parainfluenza viruses (PIV), and influenza A and B viruses. Definitions for ILI and SARI were adapted from those of the World Health Organization. Proportions of cases associated with viral aetiology were calculated by camp and by clinical case definition. In addition, for children < 5 years only, crude estimates of rates due to SARI per 1000 were obtained.ResultsWe tested specimens from 1815 ILI and 4449 SARI patients (median age = 1 year). Proportion positive for virus were AdV, 21.7%; RSV, 12.5%; hMPV, 5.7%; PIV, 9.4%; influenza A, 9.7%; and influenza B, 2.6%; 49.8% were positive for at least one virus. The annual rate of SARI hospitalisation for 2007-2010 was 57 per 1000 children per year. Virus-positive hospitalisation rates were 14 for AdV; 9 for RSV; 6 for PIV; 4 for hMPV; 5 for influenza A; and 1 for influenza B. The rate of SARI hospitalisation was highest in children < 1 year old (156 per 1000 child-years). The ratio of rates for children < 1 year and 1 to < 5 years old was 3.7:1 for AdV, 5.5:1 for RSV, 4.4:1 for PIV, 5.1:1 for hMPV, 3.2:1 for influenza A, and 2.2:1 for influenza B. While SARI hospitalisation rates peaked from November to February in Dadaab, no distinct seasonality was observed in Kakuma.ConclusionsRespiratory viral infections, particularly RSV and AdV, were associated with high rates of illness and make up a substantial portion of respiratory infection in these two refugee settings.
The Journal of Infectious Diseases | 2012
Mark A. Katz; Emmaculate Lebo; Gideon O. Emukule; Henry Njuguna; Barrack Aura; Leonard Cosmas; Alan Audi; Muthoni Junghae; Lilian W. Waiboci; Beatrice Olack; Godfrey Bigogo; M.K. Njenga; Daniel R. Feikin; Robert F. Breiman
BACKGROUND The epidemiology and burden of influenza remain poorly defined in sub-Saharan Africa. Since 2005, the Kenya Medical Research Institute and Centers for Disease Control and Prevention-Kenya have conducted population-based infectious disease surveillance in Kibera, an urban informal settlement in Nairobi, and in Lwak, a rural community in western Kenya. METHODS Nasopharyngeal and oropharyngeal swab specimens were obtained from patients who attended the study clinic and had acute lower respiratory tract (LRT) illness. Specimens were tested for influenza virus by real-time reverse-transcription polymerase chain reaction. We adjusted the incidence of influenza-associated acute LRT illness to account for patients with acute LRT illness who attended the clinic but were not sampled. RESULTS From March 2007 through February 2010, 4140 cases of acute LRT illness were evaluated in Kibera, and specimens were collected from 1197 (27%); 319 (27%) were positive for influenza virus. In Lwak, there were 6733 cases of acute LRT illness, and specimens were collected from 1641 (24%); 359 (22%) were positive for influenza virus. The crude and adjusted rates of medically attended influenza-associated acute LRT illness were 6.9 and 13.6 cases per 1000 person-years, respectively, in Kibera, and 5.6 and 23.0 cases per 1000 person-years, respectively, in Lwak. In both sites, rates of influenza-associated acute LRT illness were highest among children <2 years old and lowest among adults ≥50 years old. CONCLUSION In Kenya, the incidence of influenza-associated acute LRT illness was high in both rural and urban settings, particularly among the most vulnerable age groups.
Emerging Infectious Diseases | 2007
Robert F. Breiman; Abdulsalami Nasidi; Mark A. Katz; M. Kariuki Njenga; John Vertefeuille
Africa’s strategies for pandemic influenza must also strengthen overall public health capacity.