Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark A. Keech is active.

Publication


Featured researches published by Mark A. Keech.


Journal of Wildlife Management | 2011

Effects of Predator Treatments, Individual Traits, and Environment on Moose Survival in Alaska

Mark A. Keech; Mark S. Lindberg; Rodney D. Boertje; Patrick Valkenburg; Brian D. Taras; Toby A. Boudreau; Kimberlee B. Beckmen

ABSTRACT We studied moose (Alces alces) survival, physical condition, and abundance in a 3-predator system in western Interior Alaska, USA, during 2001–2007. Our objective was to quantify the effects of predator treatments on moose population dynamics by investigating changes in survival while evaluating the contribution of potentially confounding covariates. In May 2003 and 2004, we reduced black bear (Ursus americanus) and brown bear (U. arctos) numbers by translocating bears ≥240 km from the study area. Aircraft-assisted take reduced wolf (Canis lupus) numbers markedly in the study area during 2004–2007. We estimated black bears were reduced by approximately 96% by June 2004 and recovered to within 27% of untreated numbers by May 2007. Brown bears were reduced approximately 50% by June 2004. Late-winter wolf numbers were reduced by 75% by 2005 and likely remained at these levels through 2007. In addition to predator treatments, moose hunting closures during 2004–2007 reduced harvests of male moose by 60% in the study area. Predator treatments resulted in increased calf survival rates during summer (primarily from reduced black bear predation) and autumn (primarily from reduced wolf predation). Predator treatments had little influence on survival of moose calves during winter; instead, calf survival was influenced by snow depth and possibly temperature. Increased survival of moose calves during summer and autumn combined with relatively constant winter survival in most years led to a corresponding increase in annual survival of calves following predator treatments. Nonpredation mortalities of calves increased following predator treatments; however, this increase provided little compensation to the decrease in predation mortalities resulting from treatments. Thus, predator-induced calf mortality was primarily additive. Summer survival of moose calves was positively related to calf mass (&bgr; > 0.07, SE = 0.073) during treated years and lower (&bgr; = -0.82, SE = 0.247) for twins than singletons during all years. Following predator treatments, survival of yearling moose increased 8.7% for females and 21.4% for males during summer and 2.2% for females and 15.6% for males during autumn. Annual survival of adult (≥2 yr old) female moose also increased in treated years and was negatively (&bgr; = -0.21, SE = 0.078) related to age. Moose density increased 45%, from 0.38 moose/ km2 in 2001 to 0.55 moose/km2 in 2007, which resulted from annual increases in overall survival of moose, not increases in reproductive rates. Indices of nutritional status remained constant throughout our study despite increased moose density. This information can be used by wildlife managers and policymakers to better understand the outcomes of predator treatments in Alaska and similar environments.


Journal of Wildlife Management | 2007

Ranking Alaska Moose Nutrition: Signals to Begin Liberal Antlerless Harvests

Rodney D. Boertje; Kalin A. Kellie; C. Tom Seaton; Mark A. Keech; Donald D. Young; Bruce W. Dale; Layne G. Adams; Andrew R. Aderman

Abstract We focused on describing low nutritional status in an increasing moose (Alces alces gigas) population with reduced predation in Game Management Unit (GMU) 20A near Fairbanks, Alaska, USA. A skeptical public disallowed liberal antlerless harvests of this moose population until we provided convincing data on low nutritional status. We ranked nutritional status in 15 Alaska moose populations (in boreal forests and coastal tundra) based on multiyear twinning rates. Data on age-of-first-reproduction and parturition rates provided a ranking consistent with twinning rates in the 6 areas where comparative data were available. Also, short-yearling mass provided a ranking consistent with twinning rates in 5 of the 6 areas where data were available. Data from 5 areas implied an inverse relationship between twinning rate and browse removal rate. Only in GMU 20A did nutritional indices reach low levels where justification for halting population growth was apparent, which supports prior findings that nutrition is a minor factor limiting most Alaska moose populations compared to predation. With predator reductions, the GMU 20A moose population increased from 1976 until liberal antlerless harvests in 2004. During 1997–2005, GMU 20A moose exhibited the lowest nutritional status reported to date for wild, noninsular, North American populations, including 1) delayed reproduction until moose reached 36 months of age and the lowest parturition rate among 36-month-old moose (29%, n = 147); 2) the lowest average multiyear twinning rates from late-May aerial surveys (x̄ = 7%, SE = 0.9%, n = 9 yr, range = 3–10%) and delayed twinning until moose reached 60 months of age; 3) the lowest average mass of female short-yearlings in Alaska (x̄ = 155 ± 1.6 [SE] kg in the Tanana Flats subpopulation, up to 58 kg below average masses found elsewhere); and 4) high removal (42%) of current annual browse biomass compared to 9–26% elsewhere in boreal forests. When average multiyear twinning rates in GMU 20A (sampled during 1960–2005) declined to <10% in the mid- to late 1990s, we began encouraging liberal antlerless harvests, but only conservative annual harvests of 61–76 antlerless moose were achieved during 1996–2001. Using data in the context of our broader ranking system, we convinced skeptical citizen advisory committees to allow liberal antlerless harvests of 600–690 moose in 2004 and 2005, with the objective of halting population growth of the 16,000–17,000 moose; total harvests were 7–8% of total prehunt numbers. The resulting liberal antlerless harvests served to protect the moose populations health and habitat and to fulfill a mandate for elevated yield. Liberal antlerless harvests appear justified to halt population growth when multiyear twinning rates average ≤10% and ≥1 of the following signals substantiate low nutritional status: <50% of 36-month-old moose are parturient, average multiyear short-yearling mass is <175 kg, or >35% of annual browse biomass is removed by moose.


Journal of Wildlife Management | 2009

Managing for Elevated Yield of Moose in Interior Alaska

Rodney D. Boertje; Mark A. Keech; Donald D. Young; Kalin A. Kellie; C. Tom Seaton

Abstract Given recent actions to increase sustained yield of moose (Alces alces) in Alaska, USA, we examined factors affecting yield and moose demographics and discussed related management. Prior studies concluded that yield and density of moose remain low in much of Interior Alaska and Yukon, Canada, despite high moose reproductive rates, because of predation from lightly harvested grizzly (Ursus arctos) and black bear (U. americanus) and wolf (Canis lupus) populations. Our study area, Game Management Unit (GMU) 20A, was also in Interior Alaska, but we describe elevated yield and density of moose. Prior to our study, a wolf control program (1976–1982) helped reverse a decline in the moose population. Subsequent to 1975, moose numbers continued a 28-year, 7-fold increase through the initial 8 years of our study (λB1 = 1.05 during 1996–2004, peak density = 1,299 moose/1,000 km2). During these initial 8 hunting seasons, reported harvest was composed primarily of males (x̄ = 88%). Total harvest averaged 5% of the prehunt population and 57 moose/1,000 km2, the highest sustained harvest-density recorded in Interior Alaska for similar-sized areas. In contrast, sustained total harvests of <10 moose/1,000 km2 existed among low-density, predator-limited moose populations in Interior Alaska (≤417 moose/1,000 km2). During the final 3 years of our study (2004–2006), moose numbers declined (λB2 = 0.96) as intended using liberal harvests of female and male moose (x̄ = 47%) that averaged 7% of the prehunt population and 97 moose/1,000 km2. We intentionally reduced high densities in the central half of GMU 20A (up to 1,741 moose/1,000 km2 in Nov) because moose were reproducing at the lowest rate measured among wild, noninsular North American populations. Calf survival was uniquely high in GMU 20A compared with 7 similar radiocollaring studies in Alaska and Yukon. Low predation was the proximate factor that allowed moose in GMU 20A to increase in density and sustain elevated yields. Bears killed only 9% of the modeled postcalving moose population annually in GMU 20A during 1996–2004, in contrast to 18–27% in 3 studies of low-density moose populations. Thus, outside GMU 20A, higher bear predation rates can create challenges for those desiring rapid increases in sustained yield of moose. Wolves killed 8–15% of the 4 postcalving moose populations annually (10% in GMU 20A), hunters killed 2–6%, and other factors killed 1–6%. Annually during the increase phase in GMU 20A, calf moose constituted 75% of the predator-killed moose and predators killed 4 times more moose than hunters killed. Wolf predation on calves remained largely additive at the high moose densities studied in GMU 20A. Sustainable harvest-densities of moose can be increased several-fold in most areas of Interior Alaska where moose density and moose:predator ratios are lower than in GMU 20A and nutritional status is higher. Steps include 1) reducing predation sufficient to allow the moose population to grow, and 2) initiating harvest of female moose to halt population growth and maximize harvest after density-dependent moose nutritional indices reach or approach the thresholds we previously published.


Journal of Wildlife Management | 2010

Science and values influencing predator control for Alaska moose management.

Rodney D. Boertje; Mark A. Keech; Thomas F. Paragi

Abstract We encourage informed and transparent decision-making processes concerning the recently expanded programs in Alaska, USA, to reduce predation on moose (Alces alces). The decision whether to implement predator control ultimately concerns what society should value; therefore, policymakers, not objective biologists, play a leadership role. From a management and scientific standpoint, biological support for these predator-control programs requires convincing evidence that 1) predators kill substantial numbers of moose that would otherwise mostly live and be available for harvest, 2) low predation can facilitate reliably higher harvests of moose, 3) given less predation, habitats can sustain more moose and be protected from too many moose, and 4) sustainable populations of Alaskas brown bears (Ursus arctos), black bears (Ursus americanus), and wolves (Canis lupus) will exist in and out of control areas. We reviewed 10 moose mortality studies, 36 case histories, 10 manipulative studies, 15 moose nutrition studies, and 3 recent successful uses of nutrition-based management to harvest excess female moose. Results of these studies support application of long-term, substantial predator control for increasing yield of moose in these simple systems where moose are a primary prey of 3 effective predators. We found no substantive, contradictory results in these systems. However, to identify and administer feasible moose population objectives, recently established moose nutritional indices must be monitored, and regulatory bodies must accept nutrition-based management. In addition, the efficacy of techniques to reduce bear predation requires further study. Predicting precise results of predator control on subsequent harvest of moose will continue to be problematic because of a diversity of changing interactions among biological, environmental, and practical factors. In Alaska, the governor has the prerogative to influence regulations on predator control by appointing members to the Board of Game. At least annually, the Board of Game hears a wide spectrum of public opinions opposing and favoring predator control. We summarized these opinions as well as the societal and cultural values and expectations that are often the primary basis for debates. Advocates on both sides of the debate suggest they hold the higher conservation ethic, and both sides provide biased science. We recommend a more constructive and credible dialogue that focuses openly on values rather than on biased science and fabricated conspiracies. To be credible and to add substance in this divisive political arena, biologists must be well informed and provide complete information in an unbiased and respectful manner without exaggeration.


Wildlife Biology | 2007

Spatio-temporal patterns of predation among three sympatric predators in a single-prey system

Danielle E. Garneau; Eric Post; Toby Boudreau; Mark A. Keech; Patrick Valkenburg

Abstract The manner in which species partition space and time to minimize competition for shared, limited resources has been a major focus of theoretical and empirical ecology. Although numerous examples exist of intra-guild dietary separation among coexisting species, studies of spatio-temporal partitioning among species sharing a single food type are rare. We investigated spatio-temporal patterns of multi-species predation on individually-marked moose Alces alces calves in an Alaskan boreal forest community where moose are the only large herbivore, and constitute the primary prey of coexisting black bears Ursus americanus, brown bears U. arctos and gray wolves Canis lupus. The two most closely related predators, black bears and brown bears, overlapped temporally and spatially in their consumption of moose calves, as indicated by univariate analyses. Moreover, both bear species segregated spatially from wolves when killing moose calves. Hence, our study appears to support key predictions of predator coexistence on a shared resource: namely, that bears and wolves differentiate spatially or temporally in their use of a pulsed prey, presumably to minimize competition.


Mammalian Biology | 2008

Habitat use by black bears in relation to conspecifics and competitors

Danielle E. Garneau; Toby Boudreau; Mark A. Keech; Eric Post


Mammalian Biology | 2008

Black bear movements and habitat use during a critical period for moose calves

Danielle E. Garneau; Toby Boudreau; Mark A. Keech; Eric Post


Alces : A Journal Devoted to the Biology and Management of Moose | 2015

BROWSE REMOVAL, PLANT CONDITION, AND TWINNING RATES BEFORE AND AFTER SHORT-TERM CHANGES IN MOOSE DENSITY

Thomas F. Paragi; C. Tom Seaton; Kalin A. Kellie; Rodney D. Boertje; Knut Kielland; Donald D. Young; Mark A. Keech; Stephen DuBois


Archive | 2003

Factors Limiting Moose at High Densities in Unit 20A

Rodney D. Boertje; C. Tom Seaton; Donald D. Young; Mark A. Keech; Bruce W. Dale


Alces | 2001

Vitamin E, selenium, and reproductive losses in Alaskan moose.

Thomas R. Stephenson; J. A. Crouse; Kris J. Hundertmark; Mark A. Keech

Collaboration


Dive into the Mark A. Keech's collaboration.

Top Co-Authors

Avatar

Rodney D. Boertje

Alaska Department of Fish and Game

View shared research outputs
Top Co-Authors

Avatar

C. Tom Seaton

Alaska Department of Fish and Game

View shared research outputs
Top Co-Authors

Avatar

Donald D. Young

Alaska Department of Fish and Game

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Post

University of California

View shared research outputs
Top Co-Authors

Avatar

Kalin A. Kellie

Alaska Department of Fish and Game

View shared research outputs
Top Co-Authors

Avatar

Toby Boudreau

Idaho Department of Fish and Game

View shared research outputs
Top Co-Authors

Avatar

Brian D. Taras

Alaska Department of Fish and Game

View shared research outputs
Top Co-Authors

Avatar

Bruce W. Dale

Alaska Department of Fish and Game

View shared research outputs
Top Co-Authors

Avatar

Patrick Valkenburg

Alaska Department of Fish and Game

View shared research outputs
Researchain Logo
Decentralizing Knowledge