Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark A. Knepper is active.

Publication


Featured researches published by Mark A. Knepper.


Journal of Clinical Investigation | 1999

Aldosterone-mediated regulation of ENaC α, β, and γ subunit proteins in rat kidney

Shyama Masilamani; Gheun-Ho Kim; Carter Mitchell; James B. Wade; Mark A. Knepper

Aldosterone stimulates sodium transport in the renal collecting duct by activating the epithelial sodium channel (ENaC). To investigate the basis of this effect, we have developed a novel set of rabbit polyclonal antibodies to the 3 subunits of ENaC and have determined the abundance and distribution of ENaC subunits in the principal cells of the rat renal collecting duct. Elevated circulating aldosterone (due to either dietary NaCl restriction or aldosterone infusion) markedly increased the abundance of alphaENaC protein without increasing the abundance of the beta and gamma subunits. Thus, alphaENaC is selectively induced by aldosterone. In addition, immunofluorescence immunolocalization showed a striking redistribution in ENaC labeling to the apical region of the collecting duct principal cells. Finally, aldosterone induced a shift in molecular weight of gammaENaC from 85 kDa to 70 kDa, consistent with physiological proteolytic clipping of the extracellular loop as postulated previously. Thus, at the protein level, the response of ENaC to aldosterone stimulation is heterogenous, with both quantitative and qualitative changes that can explain observed increases in ENaC-mediated sodium transport.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion

Ines E. Royaux; Susan M. Wall; Lawrence P. Karniski; Lorraine A. Everett; Koichi Suzuki; Mark A. Knepper; Eric D. Green

Pendrin is an anion transporter encoded by the PDS/Pds gene. In humans, mutations in PDS cause the genetic disorder Pendred syndrome, which is associated with deafness and goiter. Previous studies have shown that this gene has a relatively restricted pattern of expression, with PDS/Pds mRNA detected only in the thyroid, inner ear, and kidney. The present study examined the distribution and function of pendrin in the mammalian kidney. Immunolocalization studies were performed using anti-pendrin polyclonal and monoclonal antibodies. Labeling was detected on the apical surface of a subpopulation of cells within the cortical collecting ducts (CCDs) that also express the H+-ATPase but not aquaporin-2, indicating that pendrin is present in intercalated cells of the CCD. Furthermore, pendrin was detected exclusively within the subpopulation of intercalated cells that express the H+-ATPase but not the anion exchanger 1 (AE1) and that are thought to mediate bicarbonate secretion. The same distribution of pendrin was observed in mouse, rat, and human kidney. However, pendrin was not detected in kidneys from a Pds-knockout mouse. Perfused CCD tubules isolated from alkali-loaded wild-type mice secreted bicarbonate, whereas tubules from alkali-loaded Pds-knockout mice failed to secrete bicarbonate. Together, these studies indicate that pendrin is an apical anion transporter in intercalated cells of CCDs and has an essential role in renal bicarbonate secretion.


Journal of The American Society of Nephrology | 2009

Large-Scale Proteomics and Phosphoproteomics of Urinary Exosomes

Patricia A. Gonzales; Trairak Pisitkun; Jason D. Hoffert; Dmitry Tchapyjnikov; Robert A. Star; Robert Kleta; Nam Sun Wang; Mark A. Knepper

Normal human urine contains large numbers of exosomes, which are 40- to 100-nm vesicles that originate as the internal vesicles in multivesicular bodies from every renal epithelial cell type facing the urinary space. Here, we used LC-MS/MS to profile the proteome of human urinary exosomes. Overall, the analysis identified 1132 proteins unambiguously, including 177 that are represented on the Online Mendelian Inheritance in Man database of disease-related genes, suggesting that exosome analysis is a potential approach to discover urinary biomarkers. We extended the proteomic analysis to phosphoproteomic profiling using neutral loss scanning, and this yielded multiple novel phosphorylation sites, including serine-811 in the thiazide-sensitive Na-Cl co-transporter, NCC. To demonstrate the potential use of exosome analysis to identify a genetic renal disease, we carried out immunoblotting of exosomes from urine samples of patients with a clinical diagnosis of Bartter syndrome type I, showing an absence of the sodium-potassium-chloride co-transporter 2, NKCC2. The proteomic data are publicly accessible at http://dir.nhlbi.nih.gov/papers/lkem/exosome/.


The New England Journal of Medicine | 2009

Epilepsy, Ataxia, Sensorineural Deafness, Tubulopathy, and KCNJ10 Mutations

Detlef Bockenhauer; Sally Feather; Horia Stanescu; Sascha Bandulik; Anselm A. Zdebik; Markus Reichold; Jonathan Tobin; Evelyn Lieberer; Christina Sterner; Guida Landouré; Ruchi Arora; Tony Sirimanna; Dorothy A. Thompson; J. Helen Cross; William van’t Hoff; Omar Al Masri; Kjell Tullus; Stella Yeung; Yair Anikster; Enriko Klootwijk; Mike Hubank; Michael J. Dillon; Dirk Heitzmann; Mauricio Arcos-Burgos; Mark A. Knepper; Angus Dobbie; William A. Gahl; Richard Warth; Eamonn Sheridan; Robert Kleta

BACKGROUND Five children from two consanguineous families presented with epilepsy beginning in infancy and severe ataxia, moderate sensorineural deafness, and a renal salt-losing tubulopathy with normotensive hypokalemic metabolic alkalosis. We investigated the genetic basis of this autosomal recessive disease, which we call the EAST syndrome (the presence of epilepsy, ataxia, sensorineural deafness, and tubulopathy). METHODS Whole-genome linkage analysis was performed in the four affected children in one of the families. Newly identified mutations in a potassium-channel gene were evaluated with the use of a heterologous expression system. Protein expression and function were further investigated in genetically modified mice. RESULTS Linkage analysis identified a single significant locus on chromosome 1q23.2 with a lod score of 4.98. This region contained the KCNJ10 gene, which encodes a potassium channel expressed in the brain, inner ear, and kidney. Sequencing of this candidate gene revealed homozygous missense mutations in affected persons in both families. These mutations, when expressed heterologously in xenopus oocytes, caused significant and specific decreases in potassium currents. Mice with Kcnj10 deletions became dehydrated, with definitive evidence of renal salt wasting. CONCLUSIONS Mutations in KCNJ10 cause a specific disorder, consisting of epilepsy, ataxia, sensorineural deafness, and tubulopathy. Our findings indicate that KCNJ10 plays a major role in renal salt handling and, hence, possibly also in blood-pressure maintenance and its regulation.


Molecular & Cellular Proteomics | 2006

Discovery of Urinary Biomarkers

Trairak Pisitkun; Rose Johnstone; Mark A. Knepper

A myriad of proteins and peptides can be identified in normal human urine. These are derived from a variety of sources including glomerular filtration of blood plasma, cell sloughing, apoptosis, proteolytic cleavage of cell surface glycosylphosphatidylinositol-linked proteins, and secretion of exosomes by epithelial cells. Mass spectrometry-based approaches to urinary protein and peptide profiling can, in principle, reveal changes in excretion rates of specific proteins/peptides that can have predictive value in the clinical arena, e.g. in the early diagnosis of disease, in classification of disease with regard to likely therapeutic responses, in assessment of prognosis, and in monitoring response to therapy. These approaches have potential value, not only in diseases of the kidney and urinary tract but also in systemic diseases that are associated with circulating small protein and peptide markers that can pass the glomerular filter. Most large scale biomarker discovery studies reported thus far have used one of two approaches to identify proteins and peptides whose excretion in urine changes in specific disease states: 1) two-dimensional electrophoresis with mass spectrometric and/or immunochemical identification of proteins and 2) top-down mass spectrometric methods (SELDI-TOF-MS and capillary electrophoresis-MS). These studies have been chiefly in the areas of nephrology, urology, and oncology. We review these applications, focusing on two areas of progress, viz. in bladder cancer and in acute rejection of renal transplants. Progress has been limited so far. However, with the advent of powerful LC-MS/MS methods along with methods for quantifying LC-MS/MS output, there is hope for an accelerated discovery and validation of disease biomarkers in urine.


American Journal of Physiology-renal Physiology | 1999

Vasopressin increases Na-K-2Cl cotransporter expression in thick ascending limb of Henle’s loop

Gheun-Ho Kim; Carolyn A. Ecelbarger; Carter Mitchell; Randall K. Packer; James B. Wade; Mark A. Knepper

To investigate whether the enhancement of thick ascending limb (TAL) NaCl transport in response to long-term increases in circulating vasopressin concentration is associated with increased expression levels of the apical Na-K-2Cl cotransporter in the rat TAL, we have carried out immunoblotting and immunofluorescence studies using affinity-purified, peptide-directed antibodies. Semiquantitative immunoblotting studies demonstrated a marked increase (193% of controls) in Na-K-2Cl cotransporter band density in response to restriction of water intake to 15 ml/day for 7 days. In contrast, the expression levels of two other apical proteins of the TAL (the type 3 Na/H exchanger and Tamm-Horsfall protein) were unchanged in the outer medulla. A 7-day subcutaneous infusion of the V2receptor-selective vasopressin analog, 1-desamino-[8-d-arginine]vasopressin (DDAVP), to Brattleboro rats also markedly increased Na-K-2Cl cotransporter expression in the outer medulla (183% of controls). Immunofluorescence localization in outer medullary tissue sections confirmed the increase in Na-K-2Cl cotransporter expression in response to DDAVP. We conclude that vasopressin strongly upregulates the expression of the Na-K-2Cl cotransporter of the TAL and that it is likely to play an important role in the long-term regulation of the countercurrent multiplication system.


Journal of Clinical Investigation | 1985

Control of sodium and potassium transport in the cortical collecting duct of the rat. Effects of bradykinin, vasopressin, and deoxycorticosterone.

Kimio Tomita; John J. Pisano; Mark A. Knepper

Several factors interact to maintain precise control of electrolyte transport in the mammalian cortical collecting duct. We have studied the effects of deoxycorticosterone, arginine vasopressin, and bradykinin on net transepithelial sodium and potassium transport in isolated, perfused rat cortical collecting ducts. Chronic administration of deoxycorticosterone to rats increased both sodium absorption and potassium secretion above very low basal levels. Consequently, deoxycorticosterone-treated rats were used for all remaining studies. Arginine vasopressin (10(-10) M in the bath) caused a sustained fourfold increase in net sodium absorption and a sustained threefold increase in net potassium secretion. Bradykinin (10(-9) M in the bath) caused a reversible 40-50% inhibition of net sodium absorption without affecting net potassium transport or the transepithelial potential difference. In the perfusate, up to 10(-6) M bradykinin had no effect. We conclude: As in rabbits, chronic deoxycorticosterone administration to rats increases sodium absorption and potassium secretion in cortical collecting ducts perfused in vitro. Arginine vasopressin causes a reversible increase in net potassium secretion and net sodium absorption. Bradykinin in the peritubular bathing solution reversibly inhibits net sodium absorption, possibly by affecting an electroneutral sodium transport pathway.


Journal of Clinical Investigation | 1997

Role of renal aquaporins in escape from vasopressin-induced antidiuresis in rat.

Carolyn A. Ecelbarger; Søren R.K. Nielsen; Beatriz R. Olson; Takaski Murase; Erin A. Baker; Mark A. Knepper; Joseph G. Verbalis

The purpose of this study was to investigate whether escape from vasopressin-induced antidiuresis is associated with altered regulation of any of the known aquaporin water channels. After 4-d pretreatment with 1-deamino-[8-D-arginine]-vasopressin (dDAVP) by osmotic mini-pump, rats were divided into two groups: control (continued dDAVP) and water-loaded (continued dDAVP plus a daily oral water load). A significant increase in urine volume in the water-loaded rats was observed by the second day of water loading, indicating onset of vasopressin escape. The onset of escape coincided temporally with a marked decrease in renal aquaporin-2 protein (measured by semiquantitative immunoblotting), which began at day 2 and fell to 17% of control levels by day 3. In contrast, there was no decrease in the renal expression of aquaporins 1, 3, or 4. The marked suppression of whole kidney aquaporin-2 protein was accompanied by a concomitant suppression of whole kidney aquaporin-2 mRNA levels. Immunocytochemical localization and differential centrifugation studies demonstrated that trafficking of aquaporin-2 to the plasma membrane remained intact during vasopressin escape. The results suggest that escape from vasopressin-induced antidiuresis is attributable, at least in part, to a vasopressin-independent decrease in aquaporin-2 water channel expression in the renal collecting duct.


The Journal of Physiology | 2001

Profiling of renal tubule Na + transporter abundances in NHE3 and NCC null mice using targeted proteomics

Heddwen L. Brooks; Anne Mette Sorensen; James Terris; Patrick J. Schultheis; John N. Lorenz; Gary E. Shull; Mark A. Knepper

1 The Na+‐H+ exchanger NHE3 and the thiazide‐sensitive Na+‐Cl− cotransporter NCC are the major apical sodium transporters in the proximal convoluted tubule and the distal convoluted tubule of the kidney, respectively. We investigated the mechanism of compensation that allows maintenance of sodium balance in NHE3 knockout mice and in NCC knockout mice. 2 We used a so‐called ‘targeted proteomics’ approach, which profiles the entire renal tubule with regard to changes in Na+ transporter and aquaporin abundance in response to the gene deletions. Specific antibodies to the Na+ transporters and aquaporins expressed along the nephron were utilized to determine the relative abundance of each transporter. Semiquantitative immunoblotting was used which gives an estimate of the percentage change in abundance of each transporter in knockout compared with wild‐type mice. 3 In NHE3 knockout mice three changes were identified which could compensate for the loss of NHE3‐mediated sodium absorption. (a) The proximal sodium‐phosphate cotransporter NaPi‐2 was markedly upregulated. (b) In the collecting duct, the 70 kDa form of the γ‐subunit of the epithelial sodium channel, ENaC, exhibited an increase in abundance. This is thought to be an aldosterone‐stimulated form of γ‐ENaC. (c) Glomerular filtration was significantly reduced. 4 In the NCC knockout mice, amongst all the sodium transporters expressed along the renal tubule, only the 70 kDa form of the γ‐subunit of the epithelial sodium channel, ENaC, exhibited an increase in abundance. 5 In conclusion, both mouse knockout models demonstrated successful compensation for loss of the deleted transporter. More extensive adaptation occurred in the case of the NHE3 knockout, presumably because NHE3 is responsible for much more sodium absorption in normal mice than in NCC knockout mice.


Journal of Clinical Investigation | 1988

Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct.

Robert A. Star; H Nonoguchi; Robert S. Balaban; Mark A. Knepper

UNLABELLED Vasopressin increases both the urea permeability and osmotic water permeability in the terminal part of the renal inner medullary collecting duct (terminal IMCD). To identify the second messengers that mediate these responses, we measured urea permeability, osmotic water permeability, intracellular calcium concentration, and cyclic AMP accumulation in isolated terminal IMCDs. After addition of vasopressin, a transient rise in intracellular calcium occurred that was coincident with increases in cyclic AMP accumulation and urea permeability. Half-maximal increases in urea permeability and osmotic water permeability occurred with 0.01 nM vasopressin. The threshold concentration for a measurable increase in cyclic AMP accumulation was approximately 0.01 nM, while measurable increases in intracellular calcium required much higher vasopressin concentrations (greater than 0.1 nM). Exogenous cyclic AMP (1 mM 8-Br-cAMP) mimicked the effect of vasopressin on urea permeability but did not produce a measurable change in intracellular calcium concentration. CONCLUSIONS (a) Cyclic AMP is the second messenger that mediates the urea permeability response to vasopressin in the rat terminal IMCD. (b) Vasopressin increases the intracellular calcium concentration in the rat terminal IMCD, but the physiological role of this response is not yet known.

Collaboration


Dive into the Mark A. Knepper's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason D. Hoffert

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chung-Lin Chou

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tae-Hwan Kwon

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Ming-Jiun Yu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maurice B. Burg

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge