Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark A. Rainey is active.

Publication


Featured researches published by Mark A. Rainey.


Circulation Research | 2010

EH Domain Proteins Regulate Cardiac Membrane Protein Targeting

Hjalti Gudmundsson; Thomas J. Hund; Patrick J. Wright; Crystal F. Kline; Jedidiah S. Snyder; Lan Qian; Olha M. Koval; Shane R. Cunha; Manju George; Mark A. Rainey; Farshid Kashef; Wen Dun; Penelope A. Boyden; Mark E. Anderson; Hamid Band; Peter J. Mohler

Rationale: Cardiac membrane excitability is tightly regulated by an integrated network of membrane-associated ion channels, transporters, receptors, and signaling molecules. Membrane protein dynamics in health and disease are maintained by a complex ensemble of intracellular targeting, scaffolding, recycling, and degradation pathways. Surprisingly, despite decades of research linking dysfunction in membrane protein trafficking with human cardiovascular disease, essentially nothing is known regarding the molecular identity or function of these intracellular targeting pathways in excitable cardiomyocytes. Objective: We sought to discover novel pathways for membrane protein targeting in primary cardiomyocytes. Methods and Results: We report the initial characterization of a large family of membrane trafficking proteins in human heart. We used a tissue-wide screen for novel ankyrin-associated trafficking proteins and identified 4 members of a unique Eps15 homology (EH) domain–containing protein family (EHD1, EHD2, EHD3, EHD4) that serve critical roles in endosome-based membrane protein targeting in other cell types. We show that EHD1-4 directly associate with ankyrin, provide the first information on the expression and localization of these molecules in primary cardiomyocytes, and demonstrate that EHD1-4 are coexpressed with ankyrin-B in the myocyte perinuclear region. Notably, the expression of multiple EHD proteins is increased in animal models lacking ankyrin-B, and EHD3-deficient cardiomyocytes display aberrant ankyrin-B localization and selective loss of Na/Ca exchanger expression and function. Finally, we report significant modulation of EHD expression following myocardial infarction, suggesting that these proteins may play a key role in regulating membrane excitability in normal and diseased heart. Conclusions: Our findings identify and characterize a new class of cardiac trafficking proteins, define the first group of proteins associated with the ankyrin-based targeting network, and identify potential new targets to modulate membrane excitability in disease. Notably, these data provide the first link between EHD proteins and a human disease model.


BMC Developmental Biology | 2010

The endocytic recycling regulator EHD1 is essential for spermatogenesis and male fertility in mice.

Mark A. Rainey; Manju George; Guoguang Ying; Reiko Akakura; Daniel Burgess; Ed Siefker; Tom W. Bargar; Lynn Doglio; Susan E. Crawford; Gordon L. Todd; Venkatesh Govindarajan; Rex A. Hess; Vimla Band; Mayumi Naramura; Hamid Band

BackgroundThe C-terminal Eps15 homology domain-containing protein 1 (EHD1) is ubiquitously expressed and regulates the endocytic trafficking and recycling of membrane components and several transmembrane receptors. To elucidate the function of EHD1 in mammalian development, we generated Ehd1-/- mice using a Cre/loxP system.ResultsBoth male and female Ehd1-/- mice survived at sub-Mendelian ratios. A proportion of Ehd1-/- mice were viable and showed smaller size at birth, which continued into adulthood. Ehd1-/- adult males were infertile and displayed decreased testis size, whereas Ehd1-/- females were fertile. In situ hybridization and immunohistochemistry of developing wildtype mouse testes revealed EHD1 expression in most cells of the seminiferous epithelia. Histopathology revealed abnormal spermatogenesis in the seminiferous tubules and the absence of mature spermatozoa in the epididymides of Ehd1-/- males. Seminiferous tubules showed disruption of the normal spermatogenic cycle with abnormal acrosomal development on round spermatids, clumping of acrosomes, misaligned spermatids and the absence of normal elongated spermatids in Ehd1-/- males. Light and electron microscopy analyses indicated that elongated spermatids were abnormally phagocytosed by Sertoli cells in Ehd1-/- mice.ConclusionsContrary to a previous report, these results demonstrate an important role for EHD1 in pre- and post-natal development with a specific role in spermatogenesis.


Journal of Biological Chemistry | 2011

Endocytic Recycling Proteins EHD1 and EHD2 Interact with Fer-1-like-5 (Fer1L5) and Mediate Myoblast Fusion

Avery D. Posey; Peter Pytel; Konstantina Gardikiotes; Alexis R. Demonbreun; Mark A. Rainey; Manju George; Hamid Band; Elizabeth M. McNally

The mammalian ferlins are calcium-sensing, C2 domain-containing proteins involved in vesicle trafficking. Myoferlin and dysferlin regulate myoblast fusion and muscle membrane resealing, respectively. Correspondingly, myoferlin is most highly expressed in singly nucleated myoblasts, whereas dysferlin expression is increased in mature, multinucleated myotubes. Myoferlin also mediates endocytic recycling and participates in trafficking the insulin-like growth factor receptor. We have now characterized a novel member of the ferlin family, Fer1L5, because of its high homology to dysferlin and myoferlin. We found that Fer1L5 protein is expressed in small myotubes that contain only two to four nuclei. We also found that Fer1L5 protein binds directly to the endocytic recycling proteins EHD1 and EHD2 and that the second C2 domain in Fer1L5 mediates this interaction. Reduction of EHD1 and/or EHD2 inhibits myoblast fusion, and EHD2 is required for normal translocation of Fer1L5 to the plasma membrane. The characterization of Fer1L5 and its interaction with EHD1 and EHD2 underscores the complex requirement of ferlin proteins and mediators of endocytic recycling for membrane trafficking events during myotube formation.


PLOS ONE | 2011

Renal Thrombotic Microangiopathy in Mice with Combined Deletion of Endocytic Recycling Regulators EHD3 and EHD4

Manju George; Mark A. Rainey; Mayumi Naramura; Kirk W. Foster; Melissa S. Holzapfel; Laura L. Willoughby; Guo Guang Ying; Rasna Goswami; Channabasavaiah B. Gurumurthy; Vimla Band; Simon C. Satchell; Hamid Band

Eps15 Homology Domain-containing 3 (EHD3), a member of the EHD protein family that regulates endocytic recycling, is the first protein reported to be specifically expressed in the glomerular endothelium in the kidney; therefore we generated Ehd3 –/– mice and assessed renal development and pathology. Ehd3 –/– animals showed no overt defects, and exhibited no proteinuria or glomerular pathology. However, as the expression of EHD4, a related family member, was elevated in the glomerular endothelium of Ehd3 –/– mice and suggested functional compensation, we generated and analyzed Ehd3 –/–; Ehd4 –/– mice. These mice were smaller, possessed smaller and paler kidneys, were proteinuric and died between 3–24 weeks of age. Detailed analyses of Ehd3 –/–; Ehd4 –/– kidneys demonstrated thrombotic microangiopathy (TMA)-like glomerular lesions including thickening and duplication of glomerular basement membrane, endothelial swelling and loss of fenestrations. Other changes included segmental podocyte foot process effacement, mesangial interposition, and abnormal podocytic and mesangial marker expression. The glomerular lesions observed were strikingly similar to those seen in human pre-eclampsia and mouse models of reduced VEGF expression. As altered glomerular endothelial VEGFR2 expression and localization and increased apoptosis was observed in the absence of EHD3 and EHD4, we propose that EHD-mediated endocytic traffic of key surface receptors such as VEGFR2 is essential for physiological control of glomerular function. Furthermore, Ehd3 –/–; Ehd4 –/– mice provide a unique model to elucidate mechanisms of glomerular endothelial injury which is observed in a wide variety of human renal and extra-renal diseases.


Birth Defects Research Part A-clinical and Molecular Teratology | 2012

Increased sphingoid base‐1‐phosphates and failure of neural tube closure after exposure to fumonisin or FTY720

Janee Gelineau-van Waes; Mark A. Rainey; Joyce R. Maddox; Kenneth A. Voss; Andrew J. Sachs; Nicole M. Gardner; Justin Wilberding; Ronald T. Riley

BACKGROUND Fumonisin B(1) (FB(1)) is a mycotoxin produced by a common fungal contaminant of corn. Ingestion of FB(1)-contaminated food is associated with increased risk for neural tube defects (NTDs). FB(1) induces NTDs in inbred LM/Bc mice. FB(1) inhibits ceramide synthase in de novo sphingolipid biosynthesis, resulting in accumulation of sphinganine and sphinganine-1-phosphate (Sa1P). Sa1P functions as a ligand for a family of G protein-coupled S1P receptors. METHODS Pregnant SWV and LM/Bc mice were treated with FB(1) (20 mg/kg/day intraperitoneally on embryonic day (ED) 7.5-8.5) or the known S1P receptor agonist FTY720 (10 mg/kg/day oral gavage on ED 6.5-8.5). LC/MS was used to detect sphingoid base-1-phosphates in maternal blood spots, plasma, and embryonic tissue. Strain-specific SWV and LM/Bc mouse embryonic fibroblasts (MEFs) and serum free mouse embryo (SFME) neural progenitor cells were treated with FB(1) (40 μM for 24 hr) and LC/MS was used to detect sphingoid base-1-phosphates. RESULTS FTY720 induced NTDs in both the SWV and the LM/Bc strains of mice. Sphinganine-1-P (Sa1P) and FTY720-P were elevated in the blood spots and plasma of mice treated with FB(1) or FTY720, respectively. FTY720-P was elevated in ED 9.5 exencephalic embryos. Sa1P was elevated in SFME and MEF cells treated with FB(1), and Sa1P was higher in MEFs generated from the FB(1)-NTD-susceptible LM/Bc strain. CONCLUSIONS Elevated sphingoid base-1-P after FB(1) or FTY720 suggest a potential role for these bioactive lipid ligands and activation of S1P receptor signaling pathways in the failure of neural tube closure after FB(1) or FTY720. Sa1P may represent a biomarker for FB(1)-NTD risk assessment.


Genesis | 2010

Ehd4 is required to attain normal prepubertal testis size but dispensable for fertility in male mice.

Manju George; Mark A. Rainey; Mayumi Naramura; Guo Guang Ying; Don W. Harms; Martha Hotz Vitaterna; Lynn Doglio; Susan E. Crawford; Rex A. Hess; Vimla Band; Hamid Band

The four highly homologous members of the C‐terminal EH domain‐containing (EHD) protein family (EHD1‐4) regulate endocytic recycling. To delineate the role of EHD4 in normal physiology and development, mice with a conditional knockout of the Ehd4 gene were generated. PCR of genomic DNA and Western blotting of organ lysates from Ehd4−/− mice confirmed EHD4 deletion. Ehd4−/− mice were viable and born at expected Mendelian ratios; however, males showed a 50% reduction in testis weight, obvious from postnatal day 31. An early (Day 10) increase in germ cell proliferation and apoptosis and a later increase in apoptosis (Day 31) were seen in the Ehd4−/− testis. Other defects included a progressive reduction in seminiferous tubule diameter, dysregulation of seminiferous epithelium, and head abnormalities in elongated spermatids. As a consequence, lower sperm counts and reduced fertility were observed in Ehd4−/− males. Interestingly, EHD protein expression was seen to be temporally regulated in the testis and EHD4 levels peaked between days 10 and 15. In the adult testis, EHD4 was highly expressed in primary spermatocytes and EHD4 deletion altered the levels of other EHD proteins in an age‐dependent manner. We conclude that high levels of EHD1 in the adult Ehd4−/− testis functionally compensate for lack of EHD4 and prevents the development of severe fertility defects. Our results suggest a role for EHD4 in the proper development of postmitotic and postmeiotic germ cells and implicate EHD protein‐mediated endocytic recycling as an important process in germ cell development and testis function. genesis 48:328–342, 2010.


Scientific Reports | 2016

Endocytic recycling protein EHD1 regulates primary cilia morphogenesis and SHH signaling during neural tube development

Sohinee Bhattacharyya; Mark A. Rainey; Priyanka Arya; Samikshan Dutta; Manju George; Matthew D. Storck; Rodney D. McComb; David Muirhead; Gordon L. Todd; Karen A. Gould; Kaustubh Datta; Janee Gelineau Van Waes; Vimla Band; Hamid Band

Members of the four-member C-terminal EPS15-Homology Domain-containing (EHD) protein family play crucial roles in endocytic recycling of cell surface receptors from endosomes to the plasma membrane. In this study, we show that Ehd1 gene knockout in mice on a predominantly B6 background is embryonic lethal. Ehd1-null embryos die at mid-gestation with a failure to complete key developmental processes including neural tube closure, axial turning and patterning of the neural tube. We found that Ehd1-null embryos display short and stubby cilia on the developing neuroepithelium at embryonic day 9.5 (E9.5). Loss of EHD1 also deregulates the ciliary SHH signaling with Ehd1-null embryos displaying features indicative of increased SHH signaling, including a significant downregulation in the formation of the GLI3 repressor and increase in the ventral neuronal markers specified by SHH. Using Ehd1-null MEFS we found that EHD1 protein co-localizes with the SHH receptor Smoothened in the primary cilia upon ligand stimulation. Under the same conditions, EHD1 was shown to co-traffic with Smoothened into the developing primary cilia and we identify EHD1 as a direct binding partner of Smoothened. Overall, our studies identify the endocytic recycling regulator EHD1 as a novel regulator of the primary cilium-associated trafficking of Smoothened and Hedgehog signaling.


Developmental Biology | 2015

The endocytic recycling regulatory protein EHD1 Is required for ocular lens development

Priyanka Arya; Mark A. Rainey; Sohinee Bhattacharyya; Bhopal Mohapatra; Manju George; Murali R. Kuracha; Matthew D. Storck; Vimla Band; Venkatesh Govindarajan; Hamid Band

The C-terminal Eps15 homology domain-containing (EHD) proteins play a key role in endocytic recycling, a fundamental cellular process that ensures the return of endocytosed membrane components and receptors back to the cell surface. To define the in vivo biological functions of EHD1, we have generated Ehd1 knockout mice and previously reported a requirement of EHD1 for spermatogenesis. Here, we show that approximately 56% of the Ehd1-null mice displayed gross ocular abnormalities, including anophthalmia, aphakia, microphthalmia and congenital cataracts. Histological characterization of ocular abnormalities showed pleiotropic defects that include a smaller or absent lens, persistence of lens stalk and hyaloid vasculature, and deformed optic cups. To test whether these profound ocular defects resulted from the loss of EHD1 in the lens or in non-lenticular tissues, we deleted the Ehd1 gene selectively in the presumptive lens ectoderm using Le-Cre. Conditional Ehd1 deletion in the lens resulted in developmental defects that included thin epithelial layers, small lenses and absence of corneal endothelium. Ehd1 deletion in the lens also resulted in reduced lens epithelial proliferation, survival and expression of junctional proteins E-cadherin and ZO-1. Finally, Le-Cre-mediated deletion of Ehd1 in the lens led to defects in corneal endothelial differentiation. Taken together, these data reveal a unique role for EHD1 in early lens development and suggest a previously unknown link between the endocytic recycling pathway and regulation of key developmental processes including proliferation, differentiation and morphogenesis.


International Journal of Developmental Neuroscience | 2012

Tortillas and toxins: Gene–environment interactions in fumonisin-induced neural tube defects

J. Gelineau-van Waes; Joyce R. Maddox; Mark A. Rainey; Nicole M. Gardner; Andrew J. Sachs; Kenneth A. Voss; Ronald T. Riley

Neurobiologie & Developpement, CNRS UPR3294, Inst. de Neurobiol. Alfred Fessard, Gif-sur-Yvette, France We breathe roughly half a billion times in a lifetime, generally in an effortless and even unconscious manner owing to activity of a respiratory central pattern generator (CPG) located in the hindbrain. The respiratory CPG relies on the coupling of two prominent rhythmogenic sites located in the medulla, the pre-Bötzinger Complex (preBötC) and the para-Facial Respiratory Group (pFRG). Working in the mouse embryo, we have identified the emergence of forerunning versions of these two oscillators using developmental genetics tools, electrophysiological and optical recordings. We have defined molecular and functional signatures for cells composing each oscillator. More precisely, data will be presented showing the independent developments of (i) an Egr2(also known as Krox20) derived, Phox2b/Lbx1/Atoh1-expressing embryonic parafacial oscillator and (ii) a Dbx1-derived populations of glutamatergic interneurons required for both preBötC rhythm generation and bilateral synchrony through Robo3-dependent axonal commissural pathfinding. These results indicate that each oscillator is not assembled from cells of disparate origins. Rather, each oscillator is made of cells with selective built-in functional properties that derive from a discrete transcriptionally defined domain of the neuroepithelium. Hence, the dual organisation of the respiratory CPG seems to reflect the modular origin of its composing cells. Work supported by CNRS, INSERM, ANR grants to GF.


Archive | 2012

Development of Biomarkers to Assess Fumonisin Exposure and Birth Defects

Waes Gelineau-van; Ronald T. Riley; Kenneth A. Voss; Jency L. Showker; Olga Torres; J. Matutue; Joyce R. Maddox; Mark A. Rainey; Nicole M. Gardner; Andrew J. Sachs; Simon G. Gregory; Allison E. Ashley-Koch; D. Krupp

Collaboration


Dive into the Mark A. Rainey's collaboration.

Top Co-Authors

Avatar

Hamid Band

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Manju George

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Vimla Band

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald T. Riley

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth A. Voss

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Mayumi Naramura

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Priyanka Arya

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge