Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark A. Ratner is active.

Publication


Featured researches published by Mark A. Ratner.


Journal of Computational Chemistry | 2001

6‐31G* basis set for third‐row atoms

Vitaly A. Rassolov; Mark A. Ratner; John A. Pople; Paul C. Redfern; Larry A. Curtiss

Medium basis sets based upon contractions of Gaussian primitives are developed for the third‐row elements Ga through Kr. The basis functions generalize the 6‐31G and 6‐31G* sets commonly used for atoms up to Ar. A reexamination of the 6‐31G* basis set for K and Ca developed earlier leads to the inclusion of 3d orbitals into the valence space for these atoms. Now the 6‐31G basis for the whole third‐row K through Kr has six primitive Gaussians for 1s, 2s, 2p, 3s, and 3p orbitals, and a split‐valence pair of three and one primitives for valence orbitals, which are 4s, 4p, and 3d. The nature of the polarization functions for third‐row atoms is reexamined as well. The polarization functions for K, Ca, and Ga through Kr are single set of Cartesian d‐type primitives. The polarization functions for transition metals are defined to be a single 7f set of uncontracted primitives. Comparison with experimental data shows good agreement with bond lengths and angles for representative vapor‐phase metal complexes.


Chemical Physics | 2002

First-principles based matrix Green's function approach to molecular electronic devices: general formalism

Yongqiang Xue; Supriyo Datta; Mark A. Ratner

Abstract Transport in molecular electronic devices is different from that in semiconductor mesoscopic devices in two important aspects: (1) the effect of the electronic structure and (2) the effect of the interface to the external contact. A rigorous treatment of molecular electronic devices will require the inclusion of these effects in the context of an open system exchanging particle and energy with the external environment. This calls for combining the theory of quantum transport with the theory of electronic structure starting from the first-principles. We present a self-consistent yet tractable matrix Greens function (MGF) approach for studying transport in molecular electronic devices, based on the non-equilibrium Greens function formalism of quantum transport and the density functional theory (DFT) of electronic structure using local orbital basis sets. By separating the device rigorously (within an effective single-particle theory) into the molecular region and the contact region, we can take full advantage of the natural spatial locality associated with the metallic screening in the electrodes and focus on the physical processes in the finite molecular region. This not only opens up the possibility of using the existing well-established technique of molecular electronic structure theory in transport calculations with little change, but also allows us to use the language of qualitative molecular orbital theory to interpret and rationalize the results of the computation. We emphasize the importance of the self-consistent charge transfer and voltage drop on the transport characteristics and describe the self-consistent formulation for both device at equilibrium and device out of equilibrium. For the device at equilibrium, our method provides an alternative approach for solving the molecular chemisorption problem. For the device out of equilibrium, we show that the calculation of elastic current transport through molecules, both conceptually and computationally, is no more difficult than solving the chemisorption problem.


Journal of Physics: Condensed Matter | 2007

Molecular transport junctions: vibrational effects

Michael Galperin; Mark A. Ratner; Abraham Nitzan

Transport of electrons in a single molecule junction is the simplest problem in the general subject area of molecular electronics. In the past few years, this area has been extended to probe beyond the simple tunnelling associated with large energy gaps between electrode Fermi level and molecular levels, to deal with smaller gaps, with near-resonance tunnelling and, particularly, with effects due to interaction of electronic and vibrational degrees of freedom. This overview is devoted to the theoretical and computational approaches that have been taken to understanding transport in molecular junctions when these vibronic interactions are involved. After a short experimental overview, and discussion of different test beds and measurements, we define a particular microscopic model Hamiltonian. That overall Hamiltonian can be used to discuss all of the phenomena dealt with subsequently. These include transition from coherent to incoherent transport as electron/vibration interaction increases in strength, inelastic electron tunnelling spectroscopy and its interpretation and measurement, affects of interelectronic repulsion treated at the Hubbard level, noise in molecular transport junctions, non-linear conductance phenomena, heating and heat conduction in molecular transport junctions and current-induced chemical reactions. In each of these areas, we use the same simple model Hamiltonian to analyse energetics and dynamics. While this overview does not attempt survey the literature exhaustively, it does provide appropriate references to the current literature (both experimental and theoretical). We also attempt to point out directions in which further research is required to answer cardinal questions concerning the behaviour and understanding of vibrational effects in molecular transport junctions. (Some figures in this article are in colour only in the electronic version)


Journal of Chemical Physics | 2001

Charge transfer and “band lineup” in molecular electronic devices: A chemical and numerical interpretation

Yongqiang Xue; Supriyo Datta; Mark A. Ratner

We present first-principles based calculation of charge transfer and “band lineup” in molecular electronic devices using as an example the device formed by a phenyldithiolate molecule bridging two gold electrodes and local-spin-density-functional theory with a Gaussian-type orbital basis. We show that significant charge transfer from the metal to the molecule occurs, reflecting the partially ionic character of the sulfur–gold bond and localized in the interfacial region. Such charge transfer increases the electrostatic potential in the molecule which changes the molecular energy level structures. The interaction between the molecular orbitals under the self-consistent potential and the surface metal states determines the lineup of molecular levels relative to the metal Fermi level. We also discuss the implications of our work on device engineering at the molecular scale.


Physics Today | 1999

Introduction to Ionomers

Adi Eisenberg; Joon-Seop Kim; Mark A. Ratner

Structural Variability in Ionomers. Morphology of Random Ionomers. Glass Transitions in Random Ionomers. Styrene Ionomers. Partly Crystalline Ionomers. Other Ionomers. Plasticization. Ionomer Blends. Applications. Index.


Physical Review B | 2003

Microscopic study of electrical transport through individual molecules with metallic contacts. I. Band lineup, voltage drop, and high-field transport

Yongqiang Xue; Mark A. Ratner

We consider a linear model of optical transmission through a fiber with birefringent disorder in the presence of amplifier noise. Both disorder and noise are assumed to be weak, i.e., the average bit-error rate (BER) is small. The probability distribution function (PDF) of rare violent events leading to the values of BER much larger than its typical value is estimated. We show that the PDF has a long algebraic-like tail.


Journal of the American Chemical Society | 2012

Bithiopheneimide-dithienosilole/dithienogermole copolymers for efficient solar cells: information from structure-property-device performance correlations and comparison to thieno[3,4-c]pyrrole-4,6-dione analogues.

Xugang Guo; Nanjia Zhou; Sylvia J. Lou; Jonathan W. Hennek; Rocío Ponce Ortiz; Melanie R. Butler; Pierre Luc T Boudreault; Joseph Strzalka; Pierre Morin; Mario Leclerc; Juan T. López Navarrete; Mark A. Ratner; Lin X. Chen; R. P. H. Chang; Antonio Facchetti; Tobin J. Marks

Rational creation of polymeric semiconductors from novel building blocks is critical to polymer solar cell (PSC) development. We report a new series of bithiopheneimide-based donor-acceptor copolymers for bulk-heterojunction (BHJ) PSCs. The bithiopheneimide electron-deficiency compresses polymer bandgaps and lowers the HOMOs--essential to maximize power conversion efficiency (PCE). While the dithiophene bridge progression R(2)Si→R(2)Ge minimally impacts bandgaps, it substantially alters the HOMO energies. Furthermore, imide N-substituent variation has negligible impact on polymer opto-electrical properties, but greatly affects solubility and microstructure. Grazing incidence wide-angle X-ray scattering (GIWAXS) indicates that branched N-alkyl substituents increased polymer π-π spacings vs linear N-alkyl substituents, and the dithienosilole-based PBTISi series exhibits more ordered packing than the dithienogermole-based PBTIGe analogues. Further insights into structure-property-device performance correlations are provided by a thieno[3,4-c]pyrrole-4,6-dione (TPD)-dithienosilole copolymer PTPDSi. DFT computation and optical spectroscopy show that the TPD-based polymers achieve greater subunit-subunit coplanarity via intramolecular (thienyl)S···O(carbonyl) interactions, and GIWAXS indicates that PBTISi-C8 has lower lamellar ordering, but closer π-π spacing than does the TPD-based analogue. Inverted BHJ solar cells using bithiopheneimide-based polymer as donor and PC(71)BM as acceptor exhibit promising device performance with PCEs up to 6.41% and V(oc) > 0.80 V. In analogous cells, the TPD analogue exhibits 0.08 V higher V(oc) with an enhanced PCE of 6.83%, mainly attributable to the lower-lying HOMO induced by the higher imide group density. These results demonstrate the potential of BTI-based polymers for high-performance solar cells, and provide generalizable insights into structure-property relationships in TPD, BTI, and related polymer semiconductors.


Nature Nanotechnology | 2013

A brief history of molecular electronics

Mark A. Ratner

The field of molecular electronics has been around for more than 40 years, but only recently have some fundamental problems been overcome. It is now time for researchers to move beyond simple descriptions of charge transport and explore the numerous intrinsic features of molecules.


Science | 2016

Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity

Chuancheng Jia; Agostino Migliore; Na Xin; Shaoyun Huang; Jinying Wang; Qi Yang; Shuopei Wang; Hongliang Chen; D. Wang; Boyong Feng; Zhirong Liu; Guangyu Zhang; Da Hui Qu; He Tian; Mark A. Ratner; Hongqi Xu; Abraham Nitzan; Xuefeng Guo

Stable molecular switches Many single-molecule current switches have been reported, but most show poor stability because of weak contacts to metal electrodes. Jia et al. covalently bonded a diarylethene molecule to graphene electrodes and achieved stable photoswitching at room temperature (see the Perspective by Frisbie). The incorporation of short bridging alkyl chains between the molecule and graphene decoupled their pielectron systems and allowed fast conversion of the open and closed ring states. Science, this issue p. 1443; see also p. 1394 Stable molecular conduction junctions were formed by covalently bonding single diarylethenes to graphene electrodes. Through molecular engineering, single diarylethenes were covalently sandwiched between graphene electrodes to form stable molecular conduction junctions. Our experimental and theoretical studies of these junctions consistently show and interpret reversible conductance photoswitching at room temperature and stochastic switching between different conductive states at low temperature at a single-molecule level. We demonstrate a fully reversible, two-mode, single-molecule electrical switch with unprecedented levels of accuracy (on/off ratio of ~100), stability (over a year), and reproducibility (46 devices with more than 100 cycles for photoswitching and ~105 to 106 cycles for stochastic switching).


Nature Chemistry | 2010

Exploring local currents in molecular junctions

Gemma C. Solomon; Carmen Herrmann; Thorsten Hansen; Vladimiro Mujica; Mark A. Ratner

Electron transfer through molecules is an ubiquitous process underlying the function of biological systems and synthetic devices. The electronic coupling between components varies with the structure of the molecular bridge, often in classically unintuitive ways, as determined by its quantum electronic structure. Considerable efforts in electron-transfer theory have yielded models that are useful conceptually and provide quantitative means to understand transfer rates in terms of local contributions. Here we show how a description of the local currents within a bridging molecule bound to metallic electrodes can provide chemical insight into current flow. In particular, we show that through-space, as opposed to through-bond, terms dominate in a surprising number of instances, and that interference effects can be characterized by the reversal of ring currents. Together these ideas have implications for the design of molecular electronic devices, in particular for the ways in which substituent effects may be used for maximum impact.

Collaboration


Dive into the Mark A. Ratner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin X. Chen

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Abraham Nitzan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Yongqiang Xue

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge