Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark A. Strobel.
Journal of Adhesion Science and Technology | 1989
Mark A. Strobel; Christopher Dunatov; Joan M. Strobel; Christopher S. Lyons; Steven J. Perron; Mark C. Morgen
—ESCA, wettability measurements, SEM, weight-loss determinations, and an ink adhesion test were used to characterize low-molecular-weight oxidized materials (LMWOM) formed during the corona-discharge treatment of polypropylene film. Water-soluble LMWOM is readily formed by scission processes occurring during corona treatment. The presence of water-soluble LMWOM complicates the interpretation of wettability-based measurements of corona effectiveness. Surface roughening on corona-treated polypropylene is caused by the interaction of LMWOM and water in a high-relative-humidity environment. LMWOM does not necessarily form a weak boundary layer that hinders subsequent adhesion of ink to the corona-treated film.
Journal of Adhesion Science and Technology | 1995
Mark A. Strobel; Mary Jane Walzak; Josephine M. Hill; Amy Lin; Elizabeth Karbashewski; Christopher S. Lyons
Oxidation is the most common surface modification of polymers. This paper presents a comparison of five gas-phase surface oxidation processes: corona discharge, flame, remote air plasma, ozone, and combined UV/ozone treatments. Well-characterized biaxially oriented films of polypropylene and poly(ethylene terephthalate) were treated by each of the five techniques. The surface-treated films were then analyzed by X-ray photoelectron spectroscopy (XPS or ESCA), contact-angle measurements, and Fourier-transform IR (FTIR) spectroscopy. Corona, flame, and remote-plasma processes rapidly oxidize polymer surfaces, attaining XPS O/C atomic ratios on polypropylene of greater than 0.10 in less than 0.5 s. In contrast, the various UV/ozone treatments require orders of magnitude greater exposure time to reach the same levels of surface oxidation. While corona treatment and flame treatment are well known as efficient means of oxidizing polymer surfaces, the ability of plasma treatments to rapidly oxidize polymers is no...
Plasmas and Polymers | 2003
Mark A. Strobel; Viv Jones; Christopher S. Lyons; Michael J. Ulsh; Mark J. Kushner; Rajesh Dorai; Melvyn C. Branch
The comparison of corona-treated and flame-treated polypropylene (PP) films provides insight into the mechanism of these surface-oxidation processes. Atomic force microscopy (AFM), contact-angle measurements, and X-ray photoelectron spectroscopy (XPS or ESCA) were used to characterize surface-treated biaxially oriented PP. While both processes oxidize the PP surface, corona treatment leads to the formation of water-soluble low-molecular-weight oxidized materials (LMWOM), while flame treatment does not. Computational modeling of the gas-phase chemistry in an air corona was performed using a zero-dimensional plasma-chemistry model. The modeling results indicate that the ratio of O to OH is much higher in a corona discharge than in a flame. Chain scission and the formation of LMWOM are associated with reactions involving O atoms. The higher ratios of O to OH in a corona are more conducive to LMWOM production. Surface-oxidized PP exhibits considerable thermodynamic contact-angle hysteresis that is primarily caused by microscopic chemical heterogeneity.
Journal of Adhesion Science and Technology | 1995
Mary Jane Walzak; Susan Flynn; Renate Foerch; Josephine M. Hill; Elizabeth Karbashewski; Amy Lin; Mark A. Strobel
The effects of exposure to ultraviolet (UV) light and ozone, separately and in combination, were investigated with respect to polypropylene (PP) and poly(ethylene terephthalate) (PET) surfaces. Three combinations of UV light and ozone were studied: ozone only, UV light in air (producing ozone), and UV light in air (producing ozone) supplemented by additional ozone in the incoming air. The effect of the exposure time of the PP and PET to each treatment was studied. The samples were analyzed by X-ray photoelectron spectroscopy (XPS) to determine the surface composition, and by dynamic contact angle to determine the water wettability. The results showed that the effect of the treament was dependent on the properties of the exposed polymer, with PET being more sensitive to the UV light and PP being more sensitive to the reactive species in the gas. The exposure times studied ranged from 1 to 90 min. By monitoring the oxygen uptake levels, we were able to determine that surface modification occurred within min...
Journal of Adhesion Science and Technology | 1996
Mark A. Strobel; Melvyn C. Branch; Michael J. Ulsh; Ronald S. Kapaun; Seth M. Kirk; Christopher S. Lyons
Contact-angle measurements, the ASTM standard wetting test for polyolefin films, and X-ray photoelectron spectroscopy (XPS or ESCA) were used to characterize flame-treated polypropylene (PP) films. Two combustion models, STANJAN and PREMIX, were then used to determine the chemical and physical properties of the flames used to treat the PP films. Both the flame equivalence ratio and the position of the PP film in the flame are important variables in determining the extent of oxidation and improvement in wettability obtained by flame treating. The optimal equivalence ratio for the flame treatment of PP is 0.93, while the optimal luminous flame-to-film distance is 0-2 mm. Modeling of the combustion processes occurring in the flame provides evidence that the extent of treatment correlates closely with the concentrations of H, O, and OH radicals present in the flame. The extent of surface modification of the flame-treated PP does not appear to correlate with either the flame temperature or the concentraion of ...
Journal of Adhesion Science and Technology | 1992
Mark A. Strobel; Christopher S. Lyons; Joan M. Strobel; Ronald S. Kapaun
Contact-angle measurements in air and water environments and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface properties of air-corona-treated polypropylene (PP) and poly(ethylene terephthalate) (PET) films. Surface properties were examined as a function of the storage time at various temperatures. Corona treatment forms water-soluble, low-molecular-weight oxidized materials on both polymer films. Corona-treated PP and corona-treated PET films have markedly different responses to aging. For corona-treated PP stored at ambient temperatures, only a slight decrease in wettability was observed. This decrease was attributed to the reorientation of oxidized functionalities within the surface region. At elevated storage temperatures, migration of oxidized species out of the surface region occurred under some conditions. For corona-treated PET, extensive migration and reorientation of oxidized groups occurred even at ambient temperatures, leading to significant decreases in wettability...
Journal of Adhesion Science and Technology | 1991
Joan M. Strobel; Mark A. Strobel; Christopher S. Lyons; Christopher Dunatov; Steven J. Perron
X-ray photoelectron spectroscopy (ESCA), wettability measurements, and an ink adhesion test were used to characterize changes in the surface properties of air-corona-treated polypropylene (PP) films upon aging under a variety of storage conditions. No changes in ESCA O/C atomic ratios as a function of aging were observed for corona-treated PP films. The wettability data indicated a slight decrease in wettability upon aging. Aging did not affect ink adhesion for the particular PP and ink studied. The responses obtained were independent of the various film storage conditions employed. The slight decrease in wettability observed upon aging was attributed to reorientation of oxidized functionalities within the surface region.
Journal of Adhesion Science and Technology | 2003
Mark A. Strobel; Christopher S. Lyons
The effects of low-molecular-weight oxidized materials generated by corona treatment on the adhesion properties of polypropylene (PP) film were investigated by adhering four different materials to the modified PP: a polyamide printing ink, vapor-coated aluminum, a synthetic-rubber pressure-sensitive adhesive, and an acrylate-based pressure-sensitive adhesive. The low-molecularweight materials enhanced the adhesion of the ink and acrylate-based material, but hindered the adhesion of the metal and the rubber-based adhesive. This seemingly contradictory adhesion behavior can be readily explained using the principles outlined by Brewis and Briggs in the 1980s.
Journal of Adhesion Science and Technology | 1995
Josephine M. Hill; Elizabeth Karbashewski; Amy Lin; Mark A. Strobel; Mary Jane Walzak
In this study we investigated the stability of poly(ethylene terephthalate) (PET) and polypropylene (PP) surfaces modified using three combinations of UV light and ozone: ozone only, UV light in air (producing ozone), and UV light in air supplemented by additional ozone in the incoming air. Analysis was done using X-ray photoelectron spectroscopy and dynamic contact angle measurements. Our results showed that PET film is oxidized using these treatment conditions and it changes significantly within the first week of aging and after washing with water. These changes are reflected in the decrease in the Δ(O : C) ratio and the increase in the contact angle. Conversely, PP changes very little on aging or washing. Low-molecular-weight oxidized material (LMWOM), produced on the polymer surfaces treated with UV/air or UV/air + ozone, is easily removed with water washing. On aging PET, a number of the oxidized groups at the surface disappear, seeming to migrate into the bulk. The PP, however, does not favour migra...
Journal of Adhesion Science and Technology | 2000
Mark A. Strobel; Neal P. Sullivan; Melvyn C. Branch; John Park; Michael J. Ulsh; Ronald S. Kapaun; Beth Leys
Contact-angle measurements and X-ray photoelectron spectroscopy (XPS or ESCA) were used to characterize polypropylene (PP) films that were exposed to laminar premixed air: natural gas flames containing small quantities of nitrous oxide. During combustion, the nitrous oxide generates gas-phase nitrogen oxides that lead to the affixation of nitrogen-containing functional groups to the PP surfaces. Treatment of PP in nitrous oxide-containing flames also leads to an increase in surface oxidation and markedly improves wettability when compared with standard flame treatments. The chemical form of the nitrogen affixed to the PP surface is strongly dependent on the flame equivalence ratio. Fuel-lean flames tend to affix highly oxidized forms of nitrogen such as nitrate and nitro groups, while fuel-rich flames tend to affix less-oxidized nitrogen groups such as nitroso, oxime, amide, and amine. A computational model, SPIN, was used to elucidate the chemistry of the flame as it impinges upon the cooled PP surface. The SPIN modeling indicates that the principal reactive gas-phase species at or near the PP surface are O2, OH, H, NO, NO2, HNO, and N2O. A number of possible reactions between these species and the PP can account for the formation of the various nitrogen functional groups observed.