Mark A. Tanner
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark A. Tanner.
Circulation | 2007
Mark A. Tanner; Renzo Galanello; Carlo Dessì; Gill Smith; Mark Westwood; Annalisa Agus; Michael Roughton; R. Assomull; Sunil V. Nair; Jm Walker; Dudley J. Pennell
Background— Cardiac complications secondary to iron overload are the leading cause of death in &bgr;-thalassemia major. Approximately two thirds of patients maintained on the parenteral iron chelator deferoxamine have myocardial iron loading. The oral iron chelator deferiprone has been demonstrated to remove myocardial iron, and it has been proposed that in combination with deferoxamine it may have additional effect. Methods and Results— Myocardial iron loading was assessed with the use of myocardial T2* cardiovascular magnetic resonance in 167 patients with thalassemia major receiving standard maintenance chelation monotherapy with subcutaneous deferoxamine. Of these patients, 65 with mild to moderate myocardial iron loading (T2* 8 to 20 ms) entered the trial with continuation of subcutaneous deferoxamine and were randomized to receive additional oral placebo (deferoxamine group) or oral deferiprone 75 mg/kg per day (combined group). The primary end point was the change in myocardial T2* over 12 months. Secondary end points of endothelial function (flow-mediated dilatation of the brachial artery) and cardiac function were also measured with cardiovascular magnetic resonance. There were significant improvements in the combined treatment group compared with the deferoxamine group in myocardial T2* (ratio of change in geometric means 1.50 versus 1.24; P=0.02), absolute left ventricular ejection fraction (2.6% versus 0.6%; P=0.05), and absolute endothelial function (8.8% versus 3.3%; P=0.02). There was also a significantly greater improvement in serum ferritin in the combined group (−976 versus −233 &mgr;g/L; P<0.001). Conclusions— In comparison to the standard chelation monotherapy of deferoxamine, combination treatment with additional deferiprone reduced myocardial iron and improved the ejection fraction and endothelial function in thalassemia major patients with mild to moderate cardiac iron loading.
Circulation | 2009
P. Kirk; Michael Roughton; John B. Porter; Jm Walker; Mark A. Tanner; Jigisha Patel; D. Wu; J. Taylor; M.A. Westwood; L.J. Anderson; Dudley J. Pennell
Background— The goal of this study was to determine the predictive value of cardiac T2* magnetic resonance for heart failure and arrhythmia in thalassemia major. Methods and Results— We analyzed cardiac and liver T2* magnetic resonance and serum ferritin in 652 thalassemia major patients from 21 UK centers with 1442 magnetic resonance scans. The relative risk for heart failure with cardiac T2* values <10 ms (compared with >10 ms) was 160 (95% confidence interval, 39 to 653). Heart failure occurred in 47% of patients within 1 year of a cardiac T2* <6 ms with a relative risk of 270 (95% confidence interval, 64 to 1129). The area under the receiver-operating characteristic curve for predicting heart failure was significantly greater for cardiac T2* (0.948) than for liver T2* (0.589; P<0.001) or serum ferritin (0.629; P<0.001). Cardiac T2* was <10 ms in 98% of scans in patients who developed heart failure. The relative risk for arrhythmia with cardiac T2* values <20 ms (compared with >20 ms) was 4.6 (95% confidence interval, 2.66 to 7.95). Arrhythmia occurred in 14% of patients within 1 year of a cardiac T2* of <6 ms. The area under the receiver-operating characteristic curve for predicting arrhythmia was significantly greater for cardiac T2* (0.747) than for liver T2* (0.514; P<0.001) or serum ferritin (0.518; P<0.001). The cardiac T2* was <20 ms in 83% of scans in patients who developed arrhythmia. Conclusions— Cardiac T2* magnetic resonance identifies patients at high risk of heart failure and arrhythmia from myocardial siderosis in thalassemia major and is superior to serum ferritin and liver iron. Using cardiac T2* for the early identification and treatment of patients at risk is a logical means of reducing the high burden of cardiac mortality in myocardial siderosis. Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique identifier: NCT00520559.
Journal of Cardiovascular Magnetic Resonance | 2008
Mark A. Tanner; Renzo Galanello; Carlo Dessì; Gillian C. Smith; Mark Westwood; Annalisa Agus; Martina Pibiri; Sunil V. Nair; J. Malcolm Walker; Dudley J. Pennell
BackgroundIn thalassemia major (TM), severe cardiac siderosis can be treated by continuous parenteral deferoxamine, but poor compliance, complications and deaths occur. Combined chelation therapy with deferiprone and deferoxamine is effective for moderate myocardial siderosis, but has not been prospectively examined in severe myocardial siderosis.MethodsT2* cardiovascular magnetic resonance (CMR) was performed in 167 TM patients receiving standard subcutaneous deferoxamine monotherapy, and 22 had severe myocardial siderosis (T2* < 8 ms) with impaired left ventricular (LV) function. Fifteen of these patients received combination therapy with subcutaneous deferoxamine and oral deferiprone with CMR follow-up.ResultsAt baseline, deferoxamine was prescribed at 38 ± 10.2 mg/kg for 5.3 days/week, and deferiprone at 73.9 ± 4.0 mg/kg/day. All patients continued both deferiprone and deferoxamine for 12 months. There were no deaths or new cardiovascular complications. The myocardial T2* improved (5.7 ± 0.98 ms to 7.9 ± 2.47 ms; p = 0.010), with concomitant improvement in LV ejection fraction (51.2 ± 10.9% to 65.6 ± 6.7%; p < 0.001). Serum ferritin improved from 2057 (CV 7.6%) to 666 (CV 13.2%) μg/L (p < 0.001), and liver iron improved (liver T2*: 3.7 ± 2.9 ms to 10.8 ± 7.3 ms; p = 0.006).ConclusionIn patients with severe myocardial siderosis and impaired LV function, combined chelation therapy with subcutaneous deferoxamine and oral deferiprone reduces myocardial iron and improves cardiac function. This treatment is considerably less onerous for the patient than conventional high dose continuous subcutaneous or intravenous deferoxamine monotherapy, and may be considered as an alternative. Very prolonged tailored treatment with iron chelation is necessary to clear myocardial iron, and alterations in chelation must be guided by repeated myocardial T2* scans.Trial registrationThis trial is registered as NCT00103753
Journal of Cardiovascular Magnetic Resonance | 2006
Mark A. Tanner; Renzo Galanello; Carlo Dessì; Mark Westwood; Gill Smith; Sunil V. Nair; Lisa J. Anderson; John Malcolm Walker; Dudley J. Pennell
BACKGROUND Heart failure secondary to myocardial iron loading remains the leading cause of death in thalassemia major (TM). We used cardiovascular magnetic resonance (CMR) to assess the prevalence of myocardial iron overload and ventricular dysfunction in a large cohort of TM patients maintained on conventional chelation treatment with deferoxamine. METHODS A mobile CMR scanner was transported from London, UK, to Sardinia, Italy where 167 TM patients were assessed for myocardial iron loading, B-natriuretic peptide (BNP), and ferritin. In patients with myocardial iron loading CMR assessments of ventricular function were also made. RESULTS Myocardial iron loading (T2* < 20 ms) was present in 108 (65%) patients, which was severe (T2* < 8 ms) in 22 (13%). Impaired (< 56%) left ventricular (LV) ejection fraction (EF) was present in 5%, 20% and 62% of patients with mild, moderate or severe iron loading. Increasing myocardial iron was related to impaired LVEF (Rs = 0.57, p < 0.001), weakly related to serum ferritin (Rs = -0.34, p < 0.001), and not related to liver iron (Rs = 0.11, p = 0.26). BNP was weakly related to myocardial iron (Rs = -0.35, p < 0.001) and was abnormal in only 5 patients. CONCLUSIONS Myocardial siderosis was found in two-thirds of thalassemia major patients on maintenance deferoxamine treatment. This was combined with a high prevalence of impaired LV function, the severity of which tracked the severity of iron deposition. BNP was not useful to assess myocardial siderosis.
Journal of Magnetic Resonance Imaging | 2010
Paul Kirk; Taigang He; Lisa J. Anderson; Michael Roughton; Mark A. Tanner; Wynnie W.M. Lam; Wing Y. Au; Winnie C.W. Chu; Godfrey Chi-Fung Chan; Renzo Galanello; Gildo Matta; Mark A. Fogel; Alan R. Cohen; Ru San Tan; Kevin K’o Wen Chen; Ivy Ng; Angie Lai; Suthat Fucharoen; Jiraporn Laothamata; Suporn Chuncharunee; Sutipong Jongjirasiri; David N. Firmin; Gillian C. Smith; Dudley J. Pennell
To examine the reproducibility of the single breathhold T2* technique from different scanners, after installation of standard methodology in five international centers.
British Journal of Haematology | 2007
Joseph Chacko; Dudley J. Pennell; Mark A. Tanner; Terry J. Hamblin; Beatrix Wonke; Terry Levy; Peter Thomas; Sally Killick
Magnetic resonance imaging (MRI) was used to quantify myocardial iron loading by T2* in 11 transfusion‐dependent good prognostic myelodysplastic syndrome (MDS) patients. Myocardial T2*, left ventricular function and hepatic T2* were measured simultaneously. Patients had been on transfusion therapy for 13–123 months and had serum ferritin levels of 1109–6148 μg/l at the time of study. Five patients had not commenced iron chelation and had been transfused with a median of 63 red cell units and had a median serum ferritin level of 1490 μg/l. Six patients were on iron chelation and had been transfused with a median of 112 red cell units and had a median serum ferritin level of 4809 μg/l. Hepatic iron overload was mild in two, moderate in seven and severe in two patients. The median liver iron concentration was 5·9 mg/g dry weight in chelated patients and 9·5 mg/g in non‐chelated patients (P = 0·17; not significant). Myocardial T2* indicated absent iron loading in 10/11 patients (91%; 95% confidence interval 62–98%) and borderline‐normal in one patient. Left ventricular function was normal in all patients. No correlation was observed between increasing serum ferritin levels, hepatic iron overload and myocardial T2*. A long latent period relative to hepatic iron loading appears to predate the development of myocardial iron loading in transfusion‐dependent MDS patients.
Journal of Magnetic Resonance Imaging | 2007
Taigang He; Peter D. Gatehouse; Paul Kirk; Mark A. Tanner; Gillian C. Smith; Jennifer Keegan; Raad H. Mohiaddin; Dudley J. Pennell; David N. Firmin
To compare the effectiveness and reproducibility of a new black‐blood sequence vs. a conventional bright‐blood gradient‐echo T2* sequence for myocardial iron overload measurement in thalassemia.
Journal of Magnetic Resonance Imaging | 2006
Taigang He; Peter D. Gatehouse; Lisa J. Anderson; Mark A. Tanner; Jennifer Keegan; Dudley J. Pennell; David N. Firmin
To develop a reproducible fast spin‐echo (FSE) technique for accurate myocardial T2 measurement with application to iron overload assessment in thalassemia.
Journal of Magnetic Resonance Imaging | 2007
Mark Westwood; Farrukh Shah; Lisa J. Anderson; Julian Strange; Mark A. Tanner; Alicia M. Maceira; Jo Howard; John B. Porter; J. Malcolm Walker; Beatrix Wonke; Dudley J. Pennell
To use cardiovascular magnetic resonance (CMR) techniques to examine possible causes for the left ventricular (LV) dilatation that occurs in sickle cell disease (SCD), including the effects of chronic anemia, iron‐induced cardiomyopathy, and regional fibrosis due to sludge infarcts that occur during sickle crises.
Biological Psychiatry | 2015
Robin L. Carhart-Harris; Kevin Murphy; Robert Leech; David Erritzoe; Matthew B. Wall; Bart Ferguson; Luke T.J. Williams; Leor Roseman; Stefan Brugger; Ineke De Meer; Mark A. Tanner; Robin J. Tyacke; Kim Wolff; Ajun Sethi; Michael A.P. Bloomfield; Tim M. Williams; Mark Bolstridge; Lorna Stewart; Celia J. A. Morgan; Rexford D. Newbould; Amanda Feilding; H. Val Curran; David J. Nutt
Background The compound 3,4-methylenedioxymethamphetamine (MDMA) is a potent monoamine releaser that produces an acute euphoria in most individuals. Methods In a double-blind, placebo-controlled, balanced-order study, MDMA was orally administered to 25 physically and mentally healthy individuals. Arterial spin labeling and seed-based resting state functional connectivity (RSFC) were used to produce spatial maps displaying changes in cerebral blood flow (CBF) and RSFC after MDMA administration. Participants underwent two arterial spin labeling and two blood oxygen level–dependent scans in a 90-minute scan session; MDMA and placebo study days were separated by 1 week. Results Marked increases in positive mood were produced by MDMA. Decreased CBF only was observed after MDMA, and this was localized to the right medial temporal lobe (MTL), thalamus, inferior visual cortex, and the somatosensory cortex. Decreased CBF in the right amygdala and hippocampus correlated with ratings of the intensity of global subjective effects of MDMA. The RSFC results complemented the CBF results, with decreases in RSFC between midline cortical regions, the medial prefrontal cortex, and MTL regions, and increases between the amygdala and hippocampus. There were trend-level correlations between these effects and ratings of intense and positive subjective effects. Conclusions The MTLs appear to be specifically implicated in the mechanism of action of MDMA, but further work is required to elucidate how the drug’s characteristic subjective effects arise from its modulation of spontaneous brain activity.