Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark A. Tarnopolsky is active.

Publication


Featured researches published by Mark A. Tarnopolsky.


Aging Cell | 2014

Genome-wide DNA methylation changes with age in disease-free human skeletal muscle

Artem Zykovich; Alan Hubbard; James M. Flynn; Mark A. Tarnopolsky; Mario F. Fraga; Chad M. Kerksick; Dan Ogborn; Lauren MacNeil; Sean D. Mooney; Simon Melov

A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome‐wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3′ end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation.


Human Mutation | 2014

Exome sequencing as a diagnostic tool for pediatric-onset ataxia.

Sarah L. Sawyer; Jeremy Schwartzentruber; Chandree L. Beaulieu; David A. Dyment; Amanda Smith; Jodi Warman Chardon; Grace Yoon; Guy A. Rouleau; Oksana Suchowersky; Victoria M. Siu; Lisa Murphy; Robert A. Hegele; Christian R. Marshall; Dennis E. Bulman; Jacek Majewski; Mark A. Tarnopolsky; Kym M. Boycott

Ataxia demonstrates substantial phenotypic and genetic heterogeneity. We set out to determine the diagnostic yield of exome sequencing in pediatric patients with ataxia without a molecular diagnosis after standard‐of‐care assessment in Canada. FORGE (Finding Of Rare disease GEnes) Canada is a nation‐wide project focused on identifying novel disease genes for rare pediatric diseases using whole‐exome sequencing. We retrospectively selected all FORGE Canada projects that included cerebellar ataxia as a feature. We identified 28 such families and a molecular diagnosis was made in 13; a success rate of 46%. In 11 families, we identified mutations in genes associated with known neurological syndromes and in two we identified novel disease genes. Exome analysis of sib pairs and/or patients born to consanguineous parents was more likely to be successful (9/13) than simplex cases (4/15). Our data suggest that exome sequencing is an effective first line test for pediatric patients with ataxia where a specific single gene is not immediately suspected to be causative.


Clinical Genetics | 2015

Whole-exome sequencing broadens the phenotypic spectrum of rare pediatric epilepsy: a retrospective study

David A. Dyment; Martine Tétreault; Chandree L. Beaulieu; Taila Hartley; P. Ferreira; Jodi Warman Chardon; J. Marcadier; Sarah L. Sawyer; S.J. Mosca; A.M. Innes; Jillian S. Parboosingh; Dennis E. Bulman; Jeremy Schwartzentruber; Jacek Majewski; Mark A. Tarnopolsky; Kym M. Boycott; Care Rare Canada

Whole‐exome sequencing (WES) has transformed our ability to detect mutations causing rare diseases. FORGE (Finding Of Rare disease GEnes) and Care4Rare Canada are nation‐wide projects focused on identifying disease genes using WES and translating this technology to patient care. Rare forms of epilepsy are well‐suited for WES and we retrospectively selected FORGE and Care4Rare families with clinical descriptions that included childhood‐onset epilepsy or seizures not part of a recognizable syndrome or an early‐onset encephalopathy where standard‐of‐care investigations were unrevealing. Nine families met these criteria and a diagnosis was made in seven, and potentially eight, of the families. In the eight families we identified mutations in genes associated with known neurological and epilepsy disorders: ASAH1, FOLR1, GRIN2A (two families), SCN8A, SYNGAP1 and SYNJ1. A novel and rare mutation was identified in KCNQ2 and was likely responsible for the benign seizures segregating in the family though additional evidence would be required to be definitive. In retrospect, the clinical presentation of four of the patients was considered atypical, thereby broadening the phenotypic spectrum of these conditions. Given the extensive clinical and genetic heterogeneity associated with epilepsy, our findings suggest that WES may be considered when a specific gene is not immediately suspected as causal.


Gene | 2013

Leigh syndrome associated with mitochondrial complex I deficiency due to novel mutations In NDUFV1 and NDUFS2

Samantha E. Marin; Ronit Mesterman; Brian H. Robinson; Richard J. Rodenburg; Jan A.M. Smeitink; Mark A. Tarnopolsky

Leigh syndrome (LS) is a progressive neurodegenerative disease caused by either mitochondrial or nuclear DNA mutations resulting in dysfunctional mitochondrial energy metabolism. Mutations in genes encoding for subunits of the respiratory chain or assembly factors of respiratory chain complexes are often documented in LS cases. Nicotinamide adenine dinucleotide (NADH):ubiquinone oxidoreductase (complex I) enzyme deficiencies account for a significant proportion of mitochondrial disorders, including LS. In an attempt to expand the repertoire of known mutations accounting for LS, we describe the clinical, radiological, biochemical and molecular data of six patients with LS found to have novel mutations in two complex I subunits (NDUFV1 and NDUFS2). Two siblings were homozygous for the previously undescribed R386C mutation in NDUFV1, one patient was a compound heterozygote for the R386C mutation in NDUFV1 and a frameshift mutation in the same gene, one patient was a compound heterozygote for the R88G and R199P mutations in NDUFV1, and two siblings were compound heterozygotes for an undescribed E104A mutation in NDUFS2. After the novel mutations were identified, we employed prediction models using protein conservation analysis (SIFT, PolyPhen and UCSC genome browser) to determine pathogenicity. The R386C, R88G, R199P, and E104A mutations were found to be likely pathogenic, and thus presumably account for the LS phenotype. This case series broadens our understanding of the etiology of LS by identifying new molecular defects that can result in complex I deficiency and may assist in targeted diagnostics and/or prenatal diagnosis of LS in the future.


Annals of clinical and translational neurology | 2015

Altered PLP1 splicing causes hypomyelination of early myelinating structures.

Sietske H. Kevelam; Jennifer R. Taube; Rosalina M. L. van Spaendonk; Enrico Bertini; Karen Sperle; Mark A. Tarnopolsky; Davide Tonduti; Enza Maria Valente; Lorena Travaglini; Erik A. Sistermans; Geneviève Bernard; Coriene E. Catsman-Berrevoets; Clara van Karnebeek; John R. Østergaard; Richard L. Friederich; Mahmoud F. Elsaid; Jolanda H. Schieving; Maja Tarailo-Graovac; Simona Orcesi; Marjan E. Steenweg; Carola G.M. van Berkel; Quinten Waisfisz; Truus E. M. Abbink; Marjo S. van der Knaap; Grace M. Hobson; Nicole I. Wolf

The objective of this study was to investigate the genetic etiology of the X‐linked disorder “Hypomyelination of Early Myelinating Structures” (HEMS).


Human Genetics | 2016

De novo mutations in CSNK2A1 are associated with neurodevelopmental abnormalities and dysmorphic features

Volkan Okur; Megan T. Cho; Lindsay B. Henderson; Kyle Retterer; Michael C. Schneider; Shannon Sattler; Dmitriy Niyazov; Meron Azage; Sharon R. Smith; Jonathan Picker; Sharyn Lincoln; Mark A. Tarnopolsky; Lauren Brady; Hans T. Bjornsson; Carolyn D. Applegate; Amy Dameron; Rebecca Willaert; Berivan Baskin; Jane Juusola; Wendy K. Chung

Whole exome sequencing (WES) can be used to efficiently identify de novo genetic variants associated with genetically heterogeneous conditions including intellectual disabilities. We have performed WES for 4102 (1847 female; 2255 male) intellectual disability/developmental delay cases and we report five patients with a neurodevelopmental disorder associated with developmental delay, intellectual disability, behavioral problems, hypotonia, speech problems, microcephaly, pachygyria and dysmorphic features in whom we have identified de novo missense and canonical splice site mutations in CSNK2A1, the gene encoding CK2α, the catalytic subunit of protein kinase CK2, a ubiquitous serine/threonine kinase composed of two regulatory (β) and two catalytic (α and/or α′) subunits. Somatic mutations in CSNK2A1 have been implicated in various cancers; however, this is the first study to describe a human condition associated with germline mutations in any of the CK2 subunits.


Canadian Journal of Neurological Sciences | 2014

Statin-associated Autoimmune Myopathies: A Pathophysiologic Spectrum.

Yufan Wu; Boleslaw Lach; John Provias; Mark A. Tarnopolsky; Steven K. Baker

BACKGROUND Statins have recently been reported to cause a rare autoimmune inflammatory and/or necrotic myopathy that begins or persists after drug cessation. METHODS We report on 26 patients seen at a neuromuscular centre between 2005 and 2011 who demonstrated muscle weakness/myalgias and creatine kinase elevations during or after statin treatment with continuation of signs and symptoms despite statin withdrawal. RESULTS All patients were treated with immunosuppressive therapy with good response; all improved biochemically and 86% improved clinically. Sixty-five percent of patients who attempted to taper off immunosuppressive therapy relapsed. We report on a novel finding whereby five of the seven patients who underwent multiple biopsies throughout their disease demonstrated a transformation of their histological diagnosis, with four progressing from having myofibre necrosis with minimal or no inflammation to a diagnosis of polymyositis. CONCLUSIONS This study offers preliminary evidence that statin-associated necrotizing myopathy and statin-associated polymyositis may not be separate entities but are part of the same pathophysiological spectrum. Both entities respond well to immunosuppression.


Mitochondrion | 2016

Two novel mitochondrial tRNA mutations, A7495G (tRNASer(UCN)) and C5577T (tRNATrp), are associated with seizures and cardiac dysfunction.

Djurdja Djordjevic; Lauren Brady; Renkui Bai; Mark A. Tarnopolsky

We describe here two novel mitochondrial mutations associated with a complex mitochondrial encephalopathy. An A to G transition at position 7495 (MT-TS1 (MT-tRNSer(UCN))) was identified at 83% heteroplasmy in the muscle of a four year old female with ptosis, hypotonia, seizures, and dilated cardiomyopathy (Case 1). A homoplasmic C to T transition at position 5577 (MT-TW (MT-tRNATrp)) was found in a twenty-four year old woman with exercise intolerance, mild muscle weakness, hearing loss, seizures, and cognitive decline (Case 2). The phenotypic information provided here will assist in phenotype-genotype correlations should additional patients be reported in the future. The mutations can be added to the database of mitochondrial DNA variations in conserved regions which result in clinically diverse phenotypes with the shared markers of mitochondrial disease.


Archive | 2015

Exosomes useful to treat lysosomal storage disease

Mark A. Tarnopolsky; Adeel Safdar


Archive | 2015

THERAPEUTIC METHOD OF TREATING METABOLIC DISORDERS

Mark A. Tarnopolsky; Adeel Safdar

Collaboration


Dive into the Mark A. Tarnopolsky's collaboration.

Top Co-Authors

Avatar

Adeel Safdar

McMaster University Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Melov

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge