Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Achtman is active.

Publication


Featured researches published by Mark Achtman.


Molecular Microbiology | 2006

Sex and virulence in Escherichia coli: an evolutionary perspective.

Thierry Wirth; Daniel Falush; Ruiting Lan; Frances M. Colles; Patience Mensa; Lothar H. Wieler; Helge Karch; Peter R. Reeves; Martin C. J. Maiden; Howard Ochman; Mark Achtman

Pathogenic Escherichia coli cause over 160 million cases of dysentery and one million deaths per year, whereas non‐pathogenic E. coli constitute part of the normal intestinal flora of healthy mammals and birds. The evolutionary pathways underlying this dichotomy in bacterial lifestyle were investigated by multilocus sequence typing of a global collection of isolates. Specific pathogen types [enterohaemorrhagic E. coli, enteropathogenic E. coli, enteroinvasive E. coli, K1 and Shigella] have arisen independently and repeatedly in several lineages, whereas other lineages contain only few pathogens. Rates of evolution have accelerated in pathogenic lineages, culminating in highly virulent organisms whose genomic contents are altered frequently by increased rates of homologous recombination; thus, the evolution of virulence is linked to bacterial sex. This long‐term pattern of evolution was observed in genes distributed throughout the genome, and thereby is the likely result of episodic selection for strains that can escape the host immune response.


Nature Genetics | 2003

Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica

Julian Parkhill; Mohammed Sebaihia; Andrew Preston; Lee Murphy; Nicholas R. Thomson; David Harris; Matthew T. G. Holden; Carol Churcher; Stephen D. Bentley; Karen Mungall; Ana Cerdeño-Tárraga; Louise M. Temple; Keith James; Barbara Harris; Michael A. Quail; Mark Achtman; Rebecca Atkin; Steven Baker; David Basham; Nathalie Bason; Inna Cherevach; Tracey Chillingworth; Matthew Collins; Anne Cronin; Paul Davis; Jonathan Doggett; Theresa Feltwell; Arlette Goble; N. Hamlin; Heidi Hauser

Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica are closely related Gram-negative β-proteobacteria that colonize the respiratory tracts of mammals. B. pertussis is a strict human pathogen of recent evolutionary origin and is the primary etiologic agent of whooping cough. B. parapertussis can also cause whooping cough, and B. bronchiseptica causes chronic respiratory infections in a wide range of animals. We sequenced the genomes of B. bronchiseptica RB50 (5,338,400 bp; 5,007 predicted genes), B. parapertussis 12822 (4,773,551 bp; 4,404 genes) and B. pertussis Tohama I (4,086,186 bp; 3,816 genes). Our analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors. During the evolution of these two host-restricted species there was large-scale gene loss and inactivation; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.


Nature | 2000

Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491.

Julian Parkhill; Mark Achtman; K. D. James; Stephen D. Bentley; C. Churcher; S. R. Klee; G. Morelli; D. Basham; D. Brown; Tracey Chillingworth; Robert Davies; Paul Davis; K. Devlin; Theresa Feltwell; N. Hamlin; S. Holroyd; Kay Jagels; S. Leather; Sharon Moule; Karen Mungall; Michael A. Quail; Marie-Adele Rajandream; Kim Rutherford; Mark Simmonds; J. Skelton; S. Whitehead; B. G. Spratt; Bart Barrell

Neisseria meningitidis causes bacterial meningitis and is therefore responsible for considerable morbidity and mortality in both the developed and the developing world. Meningococci are opportunistic pathogens that colonize the nasopharynges and oropharynges of asymptomatic carriers. For reasons that are still mostly unknown, they occasionally gain access to the blood, and subsequently to the cerebrospinal fluid, to cause septicaemia and meningitis. N. meningitidis strains are divided into a number of serogroups on the basis of the immunochemistry of their capsular polysaccharides; serogroup A strains are responsible for major epidemics and pandemics of meningococcal disease, and therefore most of the morbidity and mortality associated with this disease. Here we have determined the complete genome sequence of a serogroup A strain of Neisseria meningitidis, Z2491 (ref. 1). The sequence is 2,184,406 base pairs in length, with an overall G+C content of 51.8%, and contains 2,121 predicted coding sequences. The most notable feature of the genome is the presence of many hundreds of repetitive elements, ranging from short repeats, positioned either singly or in large multiple arrays, to insertion sequences and gene duplications of one kilobase or more. Many of these repeats appear to be involved in genome fluidity and antigenic variation in this important human pathogen.


Nature | 2007

An African origin for the intimate association between humans and Helicobacter pylori

Bodo Linz; Francois Balloux; Yoshan Moodley; Andrea Manica; Hua Liu; Philippe Roumagnac; Daniel Falush; Christiana Stamer; Franck Prugnolle; Schalk Van der Merwe; Yoshio Yamaoka; David Y. Graham; Emilio Perez-Trallero; Torkel Wadstrom; Sebastian Suerbaum; Mark Achtman

Infection of the stomach by Helicobacter pylori is ubiquitous among humans. However, although H. pylori strains from different geographic areas are associated with clear phylogeographic differentiation, the age of an association between these bacteria with humans remains highly controversial. Here we show, using sequences from a large data set of bacterial strains that, as in humans, genetic diversity in H. pylori decreases with geographic distance from east Africa, the cradle of modern humans. We also observe similar clines of genetic isolation by distance (IBD) for both H. pylori and its human host at a worldwide scale. Like humans, simulations indicate that H. pylori seems to have spread from east Africa around 58,000 yr ago. Even at more restricted geographic scales, where IBD tends to become blurred, principal component clines in H. pylori from Europe strongly resemble the classical clines for Europeans described by Cavalli-Sforza and colleagues. Taken together, our results establish that anatomically modern humans were already infected by H. pylori before their migrations from Africa and demonstrate that H. pylori has remained intimately associated with their human host populations ever since.


Nature Reviews Microbiology | 2008

Microbial diversity and the genetic nature of microbial species

Mark Achtman; Michael Wagner

The earth contains a huge number of largely uncharacterized Bacteria and Archaea. Microbiologists are struggling to summarize their genetic diversity and classify them, which has resulted in heated debates on methods for defining species, mechanisms that lead to speciation and whether microbial species even exist. This Review proposes that decisions on the existence of species and methods to define them should be guided by a method-free species concept that is based on cohesive evolutionary forces. It summarizes current approaches to defining species and the problems of these approaches, and presents selected examples of the population genetic patterns at and below the species level.


Nature Genetics | 2008

High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi

Kathryn E. Holt; Julian Parkhill; Camila J. Mazzoni; Philippe Roumagnac; François-Xavier Weill; Ian Goodhead; Richard Rance; Stephen Baker; Duncan J. Maskell; John Wain; Christiane Dolecek; Mark Achtman; Gordon Dougan

Isolates of Salmonella enterica serovar Typhi (Typhi), a human-restricted bacterial pathogen that causes typhoid, show limited genetic variation. We generated whole-genome sequences for 19 Typhi isolates using 454 (Roche) and Solexa (Illumina) technologies. Isolates, including the previously sequenced CT18 and Ty2 isolates, were selected to represent major nodes in the phylogenetic tree. Comparative analysis showed little evidence of purifying selection, antigenic variation or recombination between isolates. Rather, evolution in the Typhi population seems to be characterized by ongoing loss of gene function, consistent with a small effective population size. The lack of evidence for antigenic variation driven by immune selection is in contrast to strong adaptive selection for mutations conferring antibiotic resistance in Typhi. The observed patterns of genetic isolation and drift are consistent with the proposed key role of asymptomatic carriers of Typhi as the main reservoir of this pathogen, highlighting the need for identification and treatment of carriers.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Recombination and mutation during long-term gastric colonization by Helicobacter pylori: Estimates of clock rates, recombination size, and minimal age

Daniel Falush; Christian Kraft; Nancy S. Taylor; Pelayo Correa; James G. Fox; Mark Achtman; Sebastian Suerbaum

The bacterium Helicobacter pylori colonizes the gastric mucosa of half of the human population, resulting in chronic gastritis, ulcers, and cancer. We sequenced ten gene fragments from pairs of strains isolated sequentially at a mean interval of 1.8 years from 26 individuals. Several isolates had acquired small mosaic segments from other H. pylori or point mutations. The maximal mutation rate, the import size, and the frequency of recombination were calculated by using a Bayesian model. The calculations indicate that the last common ancestor of H. pylori existed at least 2,500–11,000 years ago. Imported mosaics have a median size of 417 bp, much smaller than for other bacteria, and recombination occurs frequently (60 imports spanning 25,000 bp per genome per year). Thus, the panmictic population structure of H. pylori results from very frequent recombination during mixed colonization by unrelated strains.


Annual Review of Microbiology | 2008

Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens.

Mark Achtman

Genetically monomorphic bacteria contain so little sequence diversity that sequencing a few gene fragments yields little or no information. As a result, our understanding of their evolutionary patterns presents greater technical challenges than exist for genetically diverse microbes. These challenges are now being met by analyses at the genomic level for diverse types of genetic variation, the most promising of which are single nucleotide polymorphisms. Many of the most virulent bacterial pathogens are genetically monomorphic, and understanding their evolutionary and phylogeographic patterns will help our understanding of the effects of infectious disease on human history.


Molecular Microbiology | 1999

Recombination and clonal groupings within Helicobacter pylori from different geographical regions

Mark Achtman; Takeshi Azuma; Douglas E. Berg; Yoshiyuki Ito; Giovanna Morelli; Zhi Jun Pan; Sebastian Suerbaum; Stuart A. Thompson; Arle Van Der Ende; Leen Jan Van Doorn

A collection of 20 strains of Helicobacter pylori from several regions of the world was studied to better understand the population genetic structure and diversity of this species. Sequences of fragments from seven housekeeping genes (atpA, efp, mutY, ppa, trpC, ureI, yphC ) and two virulence‐associated genes (cagA, vacA) showed high levels of synonymous sequence variation (mean percentage Ks of 10–27%) and lower levels of non‐synonymous variation (mean percentage Ka of 0.2–5.6%). Cluster analysis of pairwise differences between alleles revealed the existence of two weakly clonal groupings, which included half of the strains investigated. All six strains isolated from Japanese and coastal Chinese were assigned to the ‘Asian’ clonal grouping, probably reflecting descent from a distinct common ancestor. The clonal groupings were not totally uniform; recombination, as measured by the homoplasy test and compatibility matrices, was extremely common within all genes tested, except cagA. The fact that clonal descent could still be discerned despite such frequent recombination possibly reflects founder effects and geographical separation and/or selection for particular alleles of these genes.


Nature Genetics | 2010

Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity

Giovanna Morelli; Yajun Song; Camila J. Mazzoni; Mark Eppinger; Philippe Roumagnac; David M. Wagner; Mirjam Feldkamp; Barica Kusecek; Amy J. Vogler; Yanjun Li; Yujun Cui; Nicholas R. Thomson; Thibaut Jombart; Raphaël Leblois; Peter Lichtner; Lila Rahalison; Jeannine M. Petersen; Francois Balloux; Paul Keim; Thierry Wirth; Jacques Ravel; Ruifu Yang; Elisabeth Carniel; Mark Achtman

Pandemic infectious diseases have accompanied humans since their origins1, and have shaped the form of civilizations2. Of these, plague is possibly historically the most dramatic. We reconstructed historical patterns of plague transmission through sequence variation in 17 complete genome sequences and 933 single nucleotide polymorphisms (SNPs) within a global collection of 286 Yersinia pestis isolates. Y. pestis evolved in or near China, and has been transmitted via multiple epidemics that followed various routes, probably including transmissions to West Asia via the Silk Road and to Africa by Chinese marine voyages. In 1894, Y. pestis spread to India and radiated to diverse parts of the globe, leading to country-specific lineages that can be traced by lineage-specific SNPs. All 626 current isolates from the U.S.A. reflect one radiation and 82 isolates from Madagascar represent a second. Subsequent local microevolution of Y. pestis is marked by sequential, geographically-specific SNPs.Plague is a pandemic human invasive disease caused by the bacterial agent Yersinia pestis. We here report a comparison of 17 whole genomes of Y. pestis isolates from global sources. We also screened a global collection of 286 Y. pestis isolates for 933 SNPs using Sequenom MassArray SNP typing. We conducted phylogenetic analyses on this sequence variation dataset, assigned isolates to populations based on maximum parsimony and, from these results, made inferences regarding historical transmission routes. Our phylogenetic analysis suggests that Y. pestis evolved in or near China and spread through multiple radiations to Europe, South America, Africa and Southeast Asia, leading to country-specific lineages that can be traced by lineage-specific SNPs. All 626 current isolates from the United States reflect one radiation, and 82 isolates from Madagascar represent a second radiation. Subsequent local microevolution of Y. pestis is marked by sequential, geographically specific SNPs.

Collaboration


Dive into the Mark Achtman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bodo Linz

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhemin Zhou

University College Cork

View shared research outputs
Top Co-Authors

Avatar

Julian Parkhill

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge