Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Appleford is active.

Publication


Featured researches published by Mark Appleford.


Journal of Biomedical Materials Research Part A | 2009

Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration

Betsy M. Chesnutt; Ann M. Viano; Youling Yuan; Yunzhi Yang; Teja Guda; Mark Appleford; Joo L. Ong; Warren O. Haggard; Joel D. Bumgardner

To meet the challenge of regenerating bone lost to disease or trauma, biodegradable scaffolds are being investigated as a way to regenerate bone without the need for an auto- or allograft. Here, we have developed a novel microsphere-based chitosan/nanocrystalline calcium phosphate (CaP) composite scaffold and investigated its potential compared to plain chitosan scaffolds to be used as a bone graft substitute. Composite and chitosan scaffolds were prepared by fusing microspheres of 500-900 microm in diameter, and porosity, degradation, compressive strength, and cell growth were examined. Both scaffolds had porosities of 33-35% and pore sizes between 100 and 800 . However, composite scaffolds were much rougher and, as a result, had 20 times more surface area/unit mass than chitosan scaffolds. The compressive modulus of hydrated composite scaffolds was significantly higher than chitosan scaffolds (9.29 +/- 0.8 MPa vs. 3.26 +/- 2.5 MPa), and composite scaffolds were tougher and more flexible than what has been reported for other chitosan-CaP composites or CaP scaffolds alone. Using X-ray diffraction, scaffolds were shown to contain partially crystalline hydroxyapatite with a crystallinity of 16.7% +/- 6.8% and crystallite size of 128 +/- 55 nm. Fibronection adsorption was increased on composite scaffolds, and cell attachment was higher on composite scaffolds after 30 min, although attachment rates were similar after 1 h. Osteoblast proliferation (based on dsDNA measurements) was significantly increased after 1 week of culture. These studies have demonstrated that composite scaffolds have mechanical properties and porosity sufficient to support ingrowth of new bone tissue, and cell attachment and proliferation data indicate composite scaffolds are promising for bone regeneration.


Journal of Controlled Release | 2011

Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres

Jun Sik Son; Mark Appleford; Joo L. Ong; Joseph C. Wenke; Jong Min Kim; Seok Hwa Choi; Daniel S. Oh

In this study, ionic immobilization of dexamethasone (DEX)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres was performed on the hydroxyapatite (HAp) scaffold surfaces. It was hypothesized that in vivo bone regeneration could be enhanced with HAp scaffolds containing DEX-loaded PLGA microspheres compared to the use of HAp scaffolds alone. In vitro drug release from the encapsulated microspheres was measured prior to the implantation in the femur defects of beagle dogs. It was observed that porous, interconnected HAp scaffolds as well as DEX-loaded PLGA microspheres were successfully fabricated in this study. Additionally, PEI was successfully coated on PLGA microsphere surfaces, resulting in a net positive-charged surface. With such modification of the PLGA microsphere surfaces, DEX-loaded PLGA microspheres were immobilized on the negatively charged HAp scaffold surfaces. Release profile of DEX over a 4week immersion study indicated an initial burst release followed by a sustained release. In vivo evaluation of the defects filled with DEX-loaded HAp scaffolds indicated enhanced volume and quality of new bone formation when compared to defects that were either unfilled or filled with HAp scaffolds alone. This innovative platform for bioactive molecule delivery more potently induced osteogenesis in vivo, which may be exploited in implantable bone graft substitutes for stem cell therapy or improved in vivo performance. It was thus concluded that various bioactive molecules for bone regeneration might be efficiently incorporated with calcium phosphate-based bioceramics using biodegradable polymeric microspheres.


Journal of Biomedical Materials Research Part A | 2009

In vivo study on hydroxyapatite scaffolds with trabecular architecture for bone repair.

Mark Appleford; Sunho Oh; Namsik Oh; Joo L. Ong

The objective of this research was to investigate the bone formation and angio-conductive potential of hydroxyapatite (HA) scaffolds closely matched to trabecular bone in a canine segmental defect after 3 and 12 weeks post implantation. Histomorphometric comparisons were made between naturally forming trabecular bone (control) and defects implanted with scaffolds fabricated with micro-size (M-HA) and nano-size HA (N-HA) ceramic surfaces. Scaffold architecture was similar to trabecular bone formed in control defects at 3 weeks. No significant differences were identified between the two HA scaffolds; however, significant bone in-growth was observed by 12 weeks with 43.9 +/- 4.1% and 50.4 +/- 8.8% of the cross-sectional area filled with mineralized bone in M-HA and N-HA scaffolds, respectively. Partially organized, lamellar collagen fibrils were identified by birefringence under cross-polarized light at both 3 and 12 weeks post implantation. Substantial blood vessel infiltration was identified in the scaffolds and compared with the distribution and diameter of vessels in the surrounding cortical bone. Vessels were less numerous but significantly larger than native cortical Haversian and Volkmann canals reflecting the scaffold architecture where open spaces allowed interconnected channels of bone to form. This study demonstrated the potential of trabecular bone modeled, highly porous and interconnected, HA scaffolds for regenerative orthopedics.


Implant Dentistry | 2007

The integration of chitosan-coated titanium in bone: an in vivo study in rabbits.

Joel D. Bumgardner; Betsy M. Chesnutt; Youling Yuan; Yunzhi Yang; Mark Appleford; Sunho Oh; Ronald M. McLaughlin; Steven H. Elder; Joo L. Ong

Procedure:Much research is directed at surface modifications to enhance osseointegration of implants. A new potential coating is the biopolymer, chitosan, the deacetylated derivative of the natural polysaccharide, chitin. Chitosan is biocompatible, degradable, nontoxic, and exhibits osteogenic properties. The aim of this research was to investigate the hypothesis that chitosan-coated titanium supports bone formation and osseointegration. Materials and Methods:Chitosan (1wt% of 92.3% deacetylated chitosan in 1% acetic acid) was solution cast and bonded to rough ground titanium pins (2-mm diameter × 4-mm long) via silane reactions. Calcium phosphate sputter-coated titanium and uncoated titanium pins were used as controls. Two chitosan-coated pins, and 1 each of calcium phosphate coated and uncoated pins were implanted unilaterally in the tibia of 16 adult male New Zealand white rabbits. At 2, 4, 8, and 12 weeks, undecalcified sections were histologically evaluated for healing and bone formation. Results:Histological evaluations of tissues in contact with the chitosan-coated pins indicated minimal inflammatory response and a typical healing sequence of fibrous, woven bone formation, followed by development of lamellar bone. These observations were similar to those for tissues interfacing the control calcium phosphate-coated and uncoated titanium implants. Quantitative comparisons of the bone-implant interface were not possible since 31% of the implants migrated into the tibial marrow space after implantation due to insufficient cortical bone thickness to hold pins in place during healing. Conclusion:These data support the hypothesis that chitosan-coatings are able to develop a close bony apposition or the osseointegration of dental/craniofacial and orthopedic implants.


Acta Biomaterialia | 2009

Deposition and investigation of functionally graded calcium phosphate coatings on titanium

Xiao Bai; Stefan Sandukas; Mark Appleford; Joo L. Ong; Afsaneh Rabiei

A series of calcium phosphate coatings with graded crystallinity were deposited onto heated titanium substrates using ion beam assisted deposition. The microstructure of the coating was examined using transmission electron microscopy (TEM). The coating thickness was observed to be in a range of 594-694 nm. The degree of crystallinity and microstructural grain size of the coating showed a clear decrease with increasing distance from the substrate-coating interface. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of PO(4)(3-), and X-ray photoelectron spectroscopy (XPS) analysis on the coating top surface showed that the atomic Ca/P ratio was in the range of 1.52+/-0.15 to 1.61+/-0.07. The biological response to the coatings was also evaluated using an osteoblast precursor cell culture test. More cells and a higher integrin expression of cell attachment sites were observed on the coating surface when compared to the control group (blank titanium surface). The pull-off test showed average adhesion strengths at the coating-substrate interface to be higher than 85.12+/-5.37 MPa. Nanoindentation tests indicated that the Youngs moduli of all coatings are higher than 91.747+/-3.641 GPa and microhardness values are higher than 5.275+/-0.315 GPa. While the adhesion strength results helped us to identify the best setup for substrate temperature and processing parameters to begin the deposition, the culture test and XPS results helped identifying the optimum parameters for the last stage of deposition. TEM, X-ray diffraction, FTIR and nanoidentation results were used to further evaluate the quality of the coating and optimization of its processing parameters.


BioMed Research International | 2013

Development of Composite Scaffolds for Load-Bearing Segmental Bone Defects

Marcello Pilia; Teja Guda; Mark Appleford

The need for a suitable tissue-engineered scaffold that can be used to heal load-bearing segmental bone defects (SBDs) is both immediate and increasing. During the past 30 years, various ceramic and polymer scaffolds have been investigated for this application. More recently, while composite scaffolds built using a combination of ceramics and polymeric materials are being investigated in a greater number, very few products have progressed from laboratory benchtop studies to preclinical testing in animals. This review is based on an exhaustive literature search of various composite scaffolds designed to serve as bone regenerative therapies. We analyzed the benefits and drawbacks of different composite scaffold manufacturing techniques, the properties of commonly used ceramics and polymers, and the properties of currently investigated synthetic composite grafts. To follow, a comprehensive review of in vivo models used to test composite scaffolds in SBDs is detailed to serve as a guide to design appropriate translational studies and to identify the challenges that need to be overcome in scaffold design for successful translation. This includes selecting the animal type, determining the anatomical location within the animals, choosing the correct study duration, and finally, an overview of scaffold performance assessment.


Current Topics in Medicinal Chemistry | 2008

A Cellular Perspective to Bioceramic Scaffolds for Bone Tissue Engineering: the State of the Art

Teja Guda; Mark Appleford; Sunho Oh; Joo L. Ong

A vast number of manufacturing techniques have been employed in the last five years to manufacture three dimensional (3D) calcium phosphate (CaP) scaffolds, with the intention to replicate the architecture of native bone as well as to repair and restore bone function. Design features such as architectural control and sintering temperature and their impact on scaffold performance is presented in this review. In vitro cell responses to bioceramic scaffolds and their in vivo performances have been enhanced. Current frontiers of active research on HA scaffolds have included the relationship between fluid flow and mechanotransduction as well as cell signaling pathways that induce endothelial cell recruitment and angiogenesis. Additionally, current research has focused on a better understanding of cell signaling and its environmental cues. The availability of non-invasive and non-destructive quantitative imaging modalities has also become critical in aiding the characterization of scaffolds and predicting scaffold performance. It is thus anticipated that further knowledge gained from this research will allow the overall advancement of scaffolds that can be clinically used to restore large bone defects.


Journal of Biomedical Materials Research Part B | 2012

Antibacterial effect and cytotoxicity of Ag-doped functionally graded hydroxyapatite coatings†

Xiao Bai; Stefan Sandukas; Mark Appleford; Joo L. Ong; Afsaneh Rabiei

Functionally graded hydroxyapatite coatings (FGHA) doped with 1, 3, and 6.5 wt % silver (Ag) have been deposited on Titanium using ion-beam-assisted deposition. Scanning transmission electron microscopy on coating cross sections confirmed the presence of FGHA coating with mostly amorphous layers at the top and mostly crystalline layers toward the coating interface as well as the existence of 10-50 nm Ag particles distributed throughout the thickness of the coatings. Calcium release in phosphate buffered saline solution showed a high release rate of Ca at the beginning of the test, and a gradual decrease in release rate thereafter to a minimum level until day 7. Similarly, the release rate of Ag in ultra pure water was initially high in the first 4 h and then gradually decreased over a 7 days period. Antibacterial tests have shown a reduction in the viability of S. aureus in Ag-doped coatings particularly in samples with higher Ag concentrations of 3 and 6.5 wt %. Cytotoxicity tests using an osteoblast cell line, on the other hand, have demonstrated that the samples with 6.5 wt % Ag have a negative effect on osteoblast cell response, proliferation, and apoptosis as well as a negative effect on protein and osteocalcin production. It is notable that the samples with 3 wt % Ag or less presented minimal cytotoxicity compared with control surfaces. Considering both the antibacterial and cytotoxicity effects, it is suggested that the 3 wt % of Ag in FGHA coatings can be favorable.


Journal of Biomedical Materials Research Part A | 2011

Hydroxyapatite/polylactide biphasic combination scaffold loaded with dexamethasone for bone regeneration.

Jun Sik Son; Su Gwan Kim; Ji Su Oh; Mark Appleford; Sunho Oh; Joo L. Ong; Kyu-Bok Lee

This study presents a novel design of a ceramic/polymer biphasic combination scaffold that mimics natural bone structures and is used as a bone graft substitute. To mimic the natural bone structures, the outside cortical-like shells were composed of porous hydroxyapatite (HA) with a hollow interior using a polymeric template-coating technique; the inner trabecular-like core consisted of porous poly(D,L-lactic acid) (PLA) that was loaded with dexamethasone (DEX) and was directly produced using a particle leaching/gas forming technique to create the inner diameter of the HA scaffold. It was observed that the HA and PLA parts of the fabricated HA/PLA biphasic scaffold contained open and interconnected pore structures, and the boundary between both parts was tightly connected without any gaps. It was found that the structure of the combination scaffold was analogous to that of natural bone based on micro-computed tomography analysis. Additionally, the dense, uniform apatite layer was formed on the surface of the HA/PLA biphasic scaffold through a biomimetic process, and DEX was successfully released from the PLA of the biphasic scaffold over a 1-month period. This release caused human embryonic palatal mesenchyme cells to proliferate, differentiate, produce ECM, and form tissue in vitro. Therefore, it was concluded that this functionally graded scaffold is similar to natural bone and represents a potential bone-substitute material.


Acta Biomaterialia | 2010

Stability of antibacterial self-assembled monolayers on hydroxyapatite

Nelson S. Torres; Sunho Oh; Mark Appleford; David D. Dean; James H. Jorgensen; Joo L. Ong; C. Mauli Agrawal; Gopinath Mani

Open fractures are common in battlefields, motor vehicle accidents, gunshot wounds, sports injuries, and high-energy falls. Such fractures are treated using hydroxyapatite (HA)-based bone graft substitutes. However, open fracture wounds are highly susceptible to bacterial infections. Hence, this study was focused on incorporating antibacterial properties to HA using silver (Ag) carrying self-assembled monolayers (SAMs). Also, the stability of Ag carrying SAMs on HA was investigated under sterilization and physiological conditions. Initially, the -COOH terminated phosphonic acid SAMs of two different chain lengths (11 carbon atoms - shorter chain and 16 carbon atoms - longer chain) were deposited on HA. Antibacterial SAMs (ASAMs) were prepared by chemically attaching Ag to shorter and longer chain SAMs coated HA. X-ray photoelectron spectroscopy, atomic force microscopy, and contact angle goniometry collectively confirmed the attachment of Ag onto SAMs coated HA. The bacterial adhesion study showed that the adherence of Staphylococcus aureus was significantly reduced on ASAMs coated HA when compared to control-HA. The stability studies showed that gas plasma, dry heat and autoclave degraded most of the ASAMs on HA. UV irradiation did not damage the shorter chain ASAMs as vigorously as other treatments, while it degraded the longer chain ASAMs completely. Ethylene oxide treatment did not degrade the longer chain ASAMs unlike all other treatments but it severely damaged the shorter chain ASAMs. Both shorter and longer chain ASAMs significantly desorbed from the HA surfaces under physiological conditions although longer chain ASAMs exhibited better stability than shorter chain ASAMs. This study demonstrated the potential for using ASAMs to provide antibacterial properties to HA and the need for developing techniques to improve stability of SAMs under sterilization and physiological conditions.

Collaboration


Dive into the Mark Appleford's collaboration.

Top Co-Authors

Avatar

Joo L. Ong

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Sunho Oh

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Teja Guda

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcello Pilia

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel S. Oh

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jun Sik Son

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Brian Singleton

University of Texas at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge