Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Barger is active.

Publication


Featured researches published by Mark Barger.


Environmental Health Perspectives | 2005

Systemic Microvascular Dysfunction and Inflammation after Pulmonary Particulate Matter Exposure

Timothy R. Nurkiewicz; Dale W. Porter; Mark Barger; Lyndell Millecchia; K. Murali K. Rao; Paul J. Marvar; Ann F. Hubbs; Vincent Castranova; Matthew A. Boegehold

The epidemiologic association between pulmonary exposure to ambient particulate matter (PM) and cardiovascular dysfunction is well known, but the systemic mechanisms that drive this effect remain unclear. We have previously shown that acute pulmonary exposure to PM impairs or abolishes endothelium-dependent arteriolar dilation in the rat spinotrapezius muscle. The purpose of this study was to further characterize the effect of pulmonary PM exposure on systemic microvascular function and to identify local inflammatory events that may contribute to these effects. Rats were intratracheally instilled with residual oil fly ash (ROFA) or titanium dioxide at 0.1 or 0.25 mg/rat 24 hr before measurement of pulmonary and systemic microvascular responses. In vivo microscopy of the spinotrapezius muscle was used to study systemic arteriolar responses to intraluminal infusion of the Ca2+ ionophore A23187 or iontophoretic abluminal application of the adrenergic agonist phenylephrine (PHE). Leukocyte rolling and adhesion were quantified in venules paired with the studied arterioles. Histologic techniques were used to assess pulmonary inflammation, characterize the adherence of leukocytes to systemic venules, verify the presence of myeloperoxidase (MPO) in the systemic microvascular wall, and quantify systemic microvascular oxidative stress. In the lungs of rats exposed to ROFA or TiO2, changes in some bronchoalveolar lavage markers of inflammation were noted, but an indication of cellular damage was not found. In rats exposed to 0.1 mg ROFA, focal alveolitis was evident, particularly at sites of particle deposition. Exposure to either ROFA or TiO2 caused a dose-dependent impairment of endothelium-dependent arteriolar dilation. However, exposure to these particles did not affect microvascular constriction in response to PHE. ROFA and TiO2 exposure significantly increased leukocyte rolling and adhesion in paired venules, and these cells were positively identified as polymorphonuclear leukocytes (PMNLs). In ROFA- and TiO2-exposed rats, MPO was found in PMNLs adhering to the systemic microvascular wall. Evidence suggests that some of this MPO had been deposited in the microvascular wall. There was also evidence for oxidative stress in the microvascular wall. These results indicate that after PM exposure, the impairment of endothelium-dependent dilation in the systemic microcirculation coincides with PMNL adhesion, MPO deposition, and local oxidative stress. Collectively, these microvascular observations are consistent with events that contribute to the disruption of the control of peripheral resistance and/or cardiac dysfunction associated with PM exposure.


Environmental Health Perspectives | 2004

Particulate Matter Exposure Impairs Systemic Microvascular Endothelium-Dependent Dilation

Timothy R. Nurkiewicz; Dale W. Porter; Mark Barger; Vincent Castranova; Matthew A. Boegehold

Acute exposure to airborne pollutants, such as solid particulate matter (PM), increases the risk of cardiovascular dysfunction, but the mechanisms by which PM evokes systemic effects remain to be identified. The purpose of this study was to determine if pulmonary exposure to a PM surrogate, such as residual oil fly ash (ROFA), affects endothelium-dependent dilation in the systemic microcirculation. Rats were intratracheally instilled with ROFA at 0.1, 0.25, 1 or 2 mg/rat 24 hr before experimental measurements. Rats intratracheally instilled with saline or titanium dioxide (0.25 mg/rat) served as vehicle or particle control groups, respectively. In vivo microscopy of the spinotrapezius muscle was used to study systemic arteriolar dilator responses to the Ca2+ ionophore A23187, administered by ejection via pressurized micropipette into the arteriolar lumen. We used analysis of bronchoalveolar lavage (BAL) samples to monitor identified pulmonary inflammation and damage. To determine if ROFA exposure affected arteriolar nitric oxide sensitivity, sodium nitroprusside was iontophoretically applied to arterioles of rats exposed to ROFA. In saline-treated rats, A23187 dilated arterioles up to 72 ± 7% of maximum. In ROFA- and TiO2-exposed rats, A23187-induced dilation was significantly attenuated. BAL fluid analysis revealed measurable pulmonary inflammation and damage after exposure to 1 and 2 mg ROFA (but not TiO2 or < 1 mg ROFA), as evidenced by significantly higher polymorphonuclear leukocyte cell counts, enhanced BAL albumin levels, and increased lactate dehydrogenase activity in BAL fluid. The sensitivity of arteriolar smooth muscle to NO was similar in saline-treated and ROFA-exposed rats, suggesting that pulmonary exposure to ROFA affected endothelial rather than smooth muscle function. A significant increase in venular leukocyte adhesion and rolling was observed in ROFA-exposed rats, suggesting local inflammation at the systemic microvascular level. These results indicate that pulmonary PM exposure impairs systemic endothelium-dependent arteriolar dilation. Moreover, because rats exposed to < 1 mg ROFA or TiO2 did not exhibit BAL signs of pulmonary damage or inflammation, it appears that PM exposure can impair systemic microvascular function independently of detectable pulmonary inflammation.


Nanotoxicology | 2011

Cerium oxide nanoparticle-induced pulmonary inflammation and alveolar macrophage functional change in rats

J. Y. C. Ma; Hongwen Zhao; Robert R. Mercer; Mark Barger; Murali Rao; Terence Meighan; Diane Schwegler-Berry; Vincent Castranova; Joseph K. H. Ma

Abstract The use of cerium compounds as diesel fuel catalyst results in the emission of cerium oxide nanoparticles (CeO2) in the exhaust. This study characterized the potential effects of CeO2 exposure on lung toxicity. Male Sprague Dawley rats were exposed to CeO2 by a single intratracheal instillation at 0.15, 0.5, 1, 3.5 or 7 mg/kg body weight. At 1 day after exposure, CeO2 significantly reduced NO production, but increased IL-12 production, by alveolar macrophages (AM) in response to ex vivo lipopolysacchride (LPS) challenge, and caused AM apoptosis, through activation of caspases 9 and 3. CeO2 exposure markedly increased suppressor of cytokine signaling-1 at 1-day and elevated arginase-1 at 28-day post exposure in lung cells, while osteopontin was significantly elevated in lung tissue at both time points. CeO2 induced inflammation, cytotoxicity, air/blood barrier damage, and phospholipidosis with enlarged AM. Thus, CeO2 induced lung inflammation and injury in lungs which may lead to fibrosis.


Journal of Toxicology and Environmental Health | 1999

EFFECTS OF DIESEL EXHAUST PARTICLES (DEP), CARBON BLACK, AND SILICA ON MACROPHAGE RESPONSES TO LIPOPOLYSACCHARIDE: EVIDENCE OF DEP SUPPRESSION OF MACROPHAGE ACTIVITY

Hui-Min Yang; Mark Barger; Vincent Castranova; Joseph K. H. Ma; Jiong-Jian Yang; Jane Y. C. Ma

The effects of diesel exhaust particle (DEP) exposure on alveolar macrophage (AM) response to ex vivo and in vivo lipopolysaccharide (LPS) challenge were determined by monitoring LPS-stimulated production of interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha). The roles of the insoluble particulate and the organic compounds of DEP in altering pulmonary responses were evaluated by comparing the DEP-induced pulmonary responses to those of carbon black (CB), a carbonaceous particle with few adsorbed organic compounds, or to silica, a known pneumotoxic dust. Male Sprague-Dawley rats were exposed to a single intratracheal dose (5 or 35 mg/kg body weight) of DEP, CB, or silica, or to saline vehicle. Rats were sacrificed 1, 3, or 7 d postexposure. To study the responsiveness to the bacterial product LPS, AM isolated from particle-exposed rats were challenged ex vivo with LPS (0.1 microg/10(6) AM) and LPS-stimulated cytokine release was monitored. In addition, rats were exposed intratracheally to a single dose of DEP (5 mg/kg) and 3 d later exposed in vivo to 1 mg/kg LPS for 3 h prior to measurement of cytokine production by AM. DEP exposure resulted in neutrophil infiltration and elevated levels of albumin and lactate dehydrogenase (LDH) activity in the bronchoalveolar lavage fluid; these responses were not substantially different from those elicited by CB or silica exposure. AM from DEP-exposed rats showed increased spontaneous production of IL-1, but not TNF-alpha, while the opposite was true for CB or silica. Upon ex vivo challenge with LPS, AM from DEP-exposed rats showed a significant decrease in the secretion of TNF-alpha and, to a lesser extent, IL-1, compared to the sum of the DEP and LPS effects. In contrast, AM from CB- or silica-exposed rats did not show this decreased responsiveness to subsequent LPS challenge. This inhibitory action of DEP on LPS-stimulated AM production of IL-1 and TNF-alpha was further confirmed by the results obtained from rats exposed to both DEP and LPS in vivo. In summary, these results indicate that while DEP, CB, and silica all induce pulmonary inflammatory responses due to particle stimulation, only DEP suppress AM cytokine release in response to LPS stimulation. The contrasting cellular response with respect to DEP and CB exposures may be due to the presence of adsorbed organic compounds on DEP, which may contribute to the increased susceptibility of hosts to pulmonary infections after DEP exposure.


Toxicology and Applied Pharmacology | 2012

Induction of pulmonary fibrosis by cerium oxide nanoparticles

J. Y. C. Ma; Robert R. Mercer; Mark Barger; Diane Schwegler-Berry; James F. Scabilloni; Joseph K. H. Ma; Vincent Castranova

Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO(2)) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO(2)-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO(2) in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO(2) by a single intratracheal instillation. Alveolar macrophages (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-β1 in the fibrotic process were investigated. The results showed that CeO(2) exposure significantly increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO(2) induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5mg/kg CeO(2) and euthanized at 28 days post-exposure. Collectively, our studies show that CeO(2) induced fibrotic lung injury in rats, suggesting it may cause potential health effects.


Inhalation Toxicology | 2002

TIME COURSE OF PULMONARY RESPONSE OF RATS TO INHALATION OF CRYSTALLINE SILICA: NF-kappa B ACTIVATION, INFLAMMATION, CYTOKINE PRODUCTION, AND DAMAGE

Dale W. Porter; Jianping Ye; Jane Ma; Mark Barger; Victor A. Robinson; Dawn Ramsey; Jeff McLaurin; Amir Khan; Douglas Landsittel; Alexander W. Teass; Vincent Castranova

In vitro studies suggest that silica-induced lung disease may be linked to processes regulated by nuclear factor- κ B (NF- κ B) activation, but this has not been examined in vivo. Rats were exposed to a silica aerosol of 15 mg/m 3 (6 h/day, 5 days/wk) for 116 days, and bronchoalveolar lavage (BAL) was conducted at various times during the exposure. Silica-induced pulmonary inflammation and damage were determined by measuring BAL cell differentials and first BAL fluid lactate dehydrogenase (LDH) activity and serum albumin concentrations, respectively. NF- κ B activation and production of tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1) by BAL cells were also measured. The results demonstrate that NF- κ B activation occurred after 5 days exposure, and continued to increase thereafter. BAL cell production of IL-1 and TNF-α had increased incrementally by 10 and 30 days of exposure, respectively. This elevation continued through 79 days of exposure before further increasing at 116 days of exposure. Pulmonary inflammation and damage in silica-exposed rats were also significantly elevated at 5 days of exposure, further increased at a slow rate through 41 days of exposure, and dramatically increased thereafter. Taken together, the results indicate that the initial molecular response of NF- κ B activation in BAL cells occurs in response to low levels of silica deposition in the lung and increases more rapidly versus exposure duration than silica-induced pulmonary inflammation, cellular damage, and cytokine production by BAL cells. This suggests that NF- κ B activation in BAL cells may play an important role in the initiation and progression of silica-induced pulmonary inflammation, cellular damage, and fibrosis.


Environmental Health Perspectives | 2005

Time course of gene expression of inflammatory mediators in rat lung after diesel exhaust particle exposure.

K. Murali Krishna Rao; Jane Y. C. Ma; Terence Meighan; Mark Barger; Donna Pack; Val Vallyathan

Diesel exhaust particles (DEPs) at three concentrations (5, 35, and 50 mg/kg body weight) were instilled into rats intratracheally. We studied gene expression at 1, 7, and 30 days postexposure in cells obtained by bronchoalveolar lavage (BAL) and in lung tissue. Using real-time reverse transcriptase-polymerase chain reaction (RT-PCR), we measured the mRNA levels of eight genes [interleukin (IL)-1β, IL-6, IL-10, iNOS (inducible nitric oxide synthase), MCP-1 (monocyte chemoattractant protein-1), MIP-2 (macrophage inflammatory protein-2), TGF-β1 (transforming growth factor-β1), and TNF-α (tumor necrosis factor-α)] in BAL cells and four genes [IL-6, ICAM-1 (intercellular adhesion molecule-1), GM-CSF (granulocyte/macrophage-colony stimulating factor), and RANTES (regulated upon activation normal T cell expressed and secreted)] in lung tissue. In BAL cells on day 1, high-dose exposure induced a significant up-regulation of IL-1β, iNOS, MCP-1, and MIP-2 but no change in IL-6, IL-10, TGF-β1, and TNF-α mRNA levels. There was no change in the mRNA levels of IL-6, RANTES, ICAM-1, and GM-CSF in lung tissue. Nitric oxide production and levels of MCP-1 and MIP-2 were increased in the 24-hr culture media of alveolar macrophages (AMs) obtained on day 1. IL-6, MCP-1, and MIP-2 levels were also elevated in the BAL fluid. BAL fluid also showed increases in albumin and lactate dehydrogenase. The cellular content in BAL fluid increased at all doses and at all time periods, mainly due to an increase in polymorphonuclear leukocytes. In vitro studies in AMs and cultured lung fibroblasts showed that lung fibroblasts are a significant source of IL-6 and MCP-1 in the lung.


Journal of Toxicology and Environmental Health | 2009

Reactive oxygen species- and nitric oxide-mediated lung inflammation and mitochondrial dysfunction in wild-type and iNOS-deficient mice exposed to diesel exhaust particles.

Hongwen Zhao; Joseph K. H. Ma; Mark Barger; Robert R. Mercer; Lyndell Millecchia; Diane Schwegler-Berry; Vince Castranova; J. Y. C. Ma

Pulmonary responses to diesel exhaust particles (DEP) exposure are mediated through enhanced production of reactive oxygen species (ROS) and nitric oxide (NO) by alveolar macrophages (AM). The current study examined the differential roles of ROS and NO in DEP-induced lung injury using C57B/6J wild-type (WT) and inducible NO synthase knockout (iNOS KO) mice. Mice exposed by pharyngeal aspiration to DEP or carbon black particles (CB) (35 mg/kg) showed an inflammatory profile that included neutrophil infiltration, increased lactate dehydrogenase (LDH) activity, and elevated albumin content in bronchoalveolar lavage fluid (BALF) at 1, 3, and 7 d postexposure. The organic extract of DEP (DEPE) did not induce an inflammatory response. Comparing WT to iNOS KO mice, the results show that NO enhanced DEP-induced neutrophils infiltration and plasma albumin content in BALF and upregulated the production of the pro-inflammatory cytokine interleukin 12 (IL-12) by AM. DEP-exposed AM from iNOS KO mice displayed diminished production of IL-12 and, in response to ex vivo lipopolysaccharide (LPS) challenge, decreased production of IL-12 but increased production of IL-10 when compared to cells from WT mice. DEP, CB, but not DEPE, induced DNA damage and mitochondria dysfunction in AM, however, that is independent of cellular production of NO. These results demonstrate that DEP-induced immune/inflammatory responses in mice are regulated by both ROS- and NO-mediated pathways. NO did not affect ROS-mediated mitochondrial dysfunction and DNA damage but upregulated IL-12 and provided a counterbalance to the ROS-mediated adaptive stress response that downregulates IL-12 and upregulates IL-10.


Journal of Toxicology and Environmental Health | 2001

Acute inflammation and recovery in rats after intratracheal instillation of a 1-->3-beta-glucan (zymosan A).

Shih-Houng Young; Victor A. Robinson; Mark Barger; Dale W. Porter; David G. Frazer; Vincent Castranova

Although endotoxin is a known potent stimulant of inflammatory responses, the magnitude of pulmonary response following exposure to various organic dusts does not always correlate with endotoxin content of the dusts alone. Other components, such as 1-->3-beta-glucans, derived from the inner cell wall of yeasts and fungi, have been implicated in organic dust toxic syndrome. However, animal studies report conflicting results concerning the inflammatory potency of 1-->3-beta-glucan. In this experiment, the pulmonary reaction of rats to 1-->3-beta-glucan (zymosan A) exposure was assessed. Male Sprague-Dawley rats were exposed via intratracheal instillation (IT) to zymosan A (dose range 0-5 mg/kg body weight). Rats were sacrificed 1-7 d postexposure and the following pulmonary responses were monitored: (1) breathing frequency, (2) differential cell counts of hronchoalveolar lavage (BAL) cells, (3) chemiluminescence (CL) as a measure of alveolar macrophage activation, (4) nitric oxide production by alveolar macrophages, (5) albumin levels, and (6) lactate dehydrogenase (LDH) activity in the first acellular lavage fluid. Upon challenge with zymosan A, rats exhibited a dose-dependent pulmonary response at 1 d post IT that was significantly higher than the control level at a dose of 1-2.5 mg/kg body weight for each of these pulmonary parameters. Post-IT enhancement of breathing frequencies and polymorphonuclear leukocytes (PMN) obtained by BAL both correlated very well with zymosan A concentration (r = .95 and .99, respectively). Elevation of albumin levels and LDH activity of the acellular BAL fluid also correlated (r = .80) with the dose of zymosan. The recovery from a single intratracheal administration of zymosan A (2.5 mg/kg body weight) was monitored over 7 d. PMN and CL showed significant recovery from d 1 level by 3 d postexposure. Breathing frequencies and nitric oxide production showed significant recovery from d 1 level by 4 d postexposure. A good correlation (r2= .8) between recovery of PMN in BAL, CL, or nitric oxide production and the days postexposure was observed.


Inhalation Toxicology | 2000

SUBCHRONIC SILICA EXPOSURE ENHANCES RESPIRATORY DEFENSE MECHANISMS AND THE PULMONARY CLEARANCE OF LISTERIA MONOCYTOGENES IN RATS

James M. Antonini; Hui-Min Yang; Jane Y. C. Ma; Jenny R. Roberts; Mark Barger; Leon Butterworth; Tina G. Charron; Vince Castranova

Both Listeria monocytogenes infection and silica exposure have been shown to significantly alter immune responses. In this study, we evaluated the effect of preexposure to silica on lung defense mechanisms using a rat pulmonary L. monocytogenes infection model. Male Sprague-Dawley rats were instilled intratracheally with saline (vehicle control) or silica using either an acute treatment regimen (5 mg/kg; 3 days) or a subchronic treatment protocol (80 mg/kg; 35 days). At 3 or 35 days after silica instillation, the rats were inoculated intratracheally with either approximately 5000 or 500,000 L. monocytogenes. At 3, 5, and 7 days postinfection, the left lung was removed, homogenized, and cultured on brain heart infusion agar at 37 degrees C. The numbers of viable L. monocytogenes were counted after an overnight incubation. Bronchoalveolar lavage (BAL) was performed on the right lungs, and BAL cell differentials, acellular lactate dehydrogenase (LDH) activity and albumin content were determined. Alveolar macrophage (AM) chemiluminescence (CL) and phagocytosis were assessed as a measure of macrophage function. Lung-associated lymph nodes were removed, and lymphocytes were recovered and differentiated. Preexposure to silica significantly increased the pulmonary clearance of L. monocytogenes as compared to saline controls. Exposure to silica caused significant increases in BAL neutrophils, LDH and albumin, and lymph-nodal T cells and natural killer (NK) cells in infected and noninfected rats. CL and phagocytosis were also elevated in silica-treated rats. In summary, the results demonstrated that exposure of rats to silica enhanced pulmonary immune responses, as evidenced by increases in neutrophils, NK cells, T lymphocytes, and macrophage activation. These elevations in pulmonary immune response are likely responsible for the increase in pulmonary clearance of L. monocytogenes observed with preexposure to silica.Both Listeria monocytogenes infection and silica exposure have been shown to significantly alter immune responses. In this study, we evaluated the effect of preexposure to silica on lung defense mechanisms using a rat pulmonary L. monocytogenes infection model. Male Sprague-Dawley rats were instilled intratracheally with saline (vehicle control) or silica using either an acute treatment regimen (5 mg/kg; 3 days) or a subchronic treatment protocol (80 mg/kg; 35 days). At 3 or 35 days after silica instillation, the rats were inoculated intratracheally with either ~5000 or 500,000 L. monocytogenes. At 3, 5, and 7 days postinfection, the left lung was removed, homogenized, and cultured on brain heart infusion agar at 37°C. The numbers of viable L. monocytogenes were counted after an overnight incubation. Bronchoalveolar lavage (BAL) was performed on the right lungs, and BAL cell differentials, acellular lactate dehydrogenase (LDH) activity and albumin content were determined. Alveolar macrophage (AM) chemiluminescence (CL) and phagocytosis were assessed as a measure of macrophage function. Lung-associated lymph nodes were removed, and lymphocytes were recovered and differentiated. Preexposure to silica significantly increased the pulmonary clearance of L. monocytogenes as compared to saline controls. Exposure to silica caused significant increases in BAL neutrophils, LDH and albumin, and lymph-nodal T cells and natural killer (NK) cells in infected and noninfected rats. CL and phagocytosis were also elevated in silica-treated rats. In summary, the results demonstrated that exposure of rats to silica enhanced pulmonary immune responses, as evidenced by increases in neutrophils, NK cells, T lymphocytes, and macrophage activation. These elevations in pulmonary immune response are likely responsible for the increase in pulmonary clearance of L. monocytogenes observed with preexposure to silica.

Collaboration


Dive into the Mark Barger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane Y. C. Ma

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale W. Porter

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

J. Y. C. Ma

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Diane Schwegler-Berry

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Jenny R. Roberts

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Ann F. Hubbs

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

James M. Antonini

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Victor A. Robinson

National Institute for Occupational Safety and Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge