Mark C. Field
University of Dundee
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark C. Field.
Current Biology | 2016
Andrew P. Jackson; Thomas D. Otto; Martin Aslett; Stuart D. Armstrong; Frédéric Bringaud; Alexander Schlacht; Catherine Hartley; Mandy Sanders; Jonathan M. Wastling; Joel B. Dacks; Alvaro Acosta-Serrano; Mark C. Field; Michael L. Ginger; Matthew Berriman
Summary The evolution of parasitism is a recurrent event in the history of life and a core problem in evolutionary biology. Trypanosomatids are important parasites and include the human pathogens Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp., which in humans cause African trypanosomiasis, Chagas disease, and leishmaniasis, respectively. Genome comparison between trypanosomatids reveals that these parasites have evolved specialized cell-surface protein families, overlaid on a well-conserved cell template. Understanding how these features evolved and which ones are specifically associated with parasitism requires comparison with related non-parasites. We have produced genome sequences for Bodo saltans, the closest known non-parasitic relative of trypanosomatids, and a second bodonid, Trypanoplasma borreli. Here we show how genomic reduction and innovation contributed to the character of trypanosomatid genomes. We show that gene loss has “streamlined” trypanosomatid genomes, particularly with respect to macromolecular degradation and ion transport, but consistent with a widespread loss of functional redundancy, while adaptive radiations of gene families involved in membrane function provide the principal innovations in trypanosomatid evolution. Gene gain and loss continued during trypanosomatid diversification, resulting in the asymmetric assortment of ancestral characters such as peptidases between Trypanosoma and Leishmania, genomic differences that were subsequently amplified by lineage-specific innovations after divergence. Finally, we show how species-specific, cell-surface gene families (DGF-1 and PSA) with no apparent structural similarity are independent derivations of a common ancestral form, which we call “bodonin.” This new evidence defines the parasitic innovations of trypanosomatid genomes, revealing how a free-living phagotroph became adapted to exploiting hostile host environments.
Nature Structural & Molecular Biology | 2016
Margaret R. Heider; Mingyu Gu; Caroline M Duffy; Anne M. Mirza; Laura L Marcotte; Alexandra C Walls; Nicholas Farrall; Zhanna Hakhverdyan; Mark C. Field; Michael P. Rout; Adam Frost; Mary Munson
The exocyst is a hetero-octameric complex that has been proposed to serve as the tethering complex for exocytosis, although it remains poorly understood at the molecular level. Here, we purified endogenous exocyst complexes from Saccharomyces cerevisiae and showed that they are stable and consist of all eight subunits with equal stoichiometry. Using a combination of biochemical and auxin induced–degradation experiments in yeast, we mapped the subunit connectivity, identified two stable four-subunit modules within the octamer and demonstrated that several known exocyst-binding partners are not necessary for exocyst assembly and stability. Furthermore, we visualized the structure of the yeast complex by using negative-stain electron microscopy; our results indicate that the exocyst exists predominantly as a stable, octameric complex with an elongated architecture that suggests that the subunits are contiguous helical bundles packed together into a bundle of long rods.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Michael Lynch; Mark C. Field; Holly V. Goodson; Harmit S. Malik; José B. Pereira-Leal; David S. Roos; Aaron P. Turkewitz; Shelley Sazer
All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.
PLOS Biology | 2016
Samson O. Obado; Marc Brillantes; Kunihiro Uryu; Wenzhu Zhang; Natalia E. Ketaren; Brian T. Chait; Mark C. Field; Michael P. Rout
The nuclear pore complex (NPC) is responsible for nucleocytoplasmic transport and constitutes a hub for control of gene expression. The components of NPCs from several eukaryotic lineages have been determined, but only the yeast and vertebrate NPCs have been extensively characterized at the quaternary level. Significantly, recent evidence indicates that compositional similarity does not necessarily correspond to homologous architecture between NPCs from different taxa. To address this, we describe the interactome of the trypanosome NPC, a representative, highly divergent eukaryote. We identify numerous new NPC components and report an exhaustive interactome, allowing assignment of trypanosome nucleoporins to discrete NPC substructures. Remarkably, despite retaining similar protein composition, there are exceptional architectural dissimilarities between opisthokont (yeast and vertebrates) and excavate (trypanosomes) NPCs. Whilst elements of the inner core are conserved, numerous peripheral structures are highly divergent, perhaps reflecting requirements to interface with divergent nuclear and cytoplasmic functions. Moreover, the trypanosome NPC has almost complete nucleocytoplasmic symmetry, in contrast to the opisthokont NPC; this may reflect divergence in RNA export processes at the NPC cytoplasmic face, as we find evidence supporting Ran-dependent mRNA export in trypanosomes, similar to protein transport. We propose a model of stepwise acquisition of nucleocytoplasmic mechanistic complexity and demonstrate that detailed dissection of macromolecular complexes provides fuller understanding of evolutionary processes.
Traffic | 2014
Mark C. Field; Ludek Koreny; Michael P. Rout
The nucleus is the defining intracellular organelle of eukaryotic cells and represents a major structural innovation that differentiates the eukaryotic and prokaryotic cellular form. The presence of a nuclear envelope (NE) encapsulating the nucleus necessitates a mechanism for interchange between the contents of the nuclear interior and the cytoplasm, which is mediated via the nuclear pore complex (NPC), a large protein assembly residing in nuclear pores in the NE. Recent advances have begun to map the structure and functions of the NPC in multiple organisms, and to allow reconstruction of some of the evolutionary events that underpin the modern NPC form, highlighting common and differential NPC features across the eukaryotes. Here we discuss some of these advances and the questions being pursued, consider how the evolution of the NPC has been constrained, and finally propose a model for how the NPC evolved.
Cold Spring Harbor Perspectives in Biology | 2014
Alexander Schlacht; Emily K. Herman; Mary J. Klute; Mark C. Field; Joel B. Dacks
The membrane-trafficking system underpins cellular trafficking of material in eukaryotes and its evolution would have been a watershed in eukaryogenesis. Evolutionary cell biological studies have been unraveling the history of proteins responsible for vesicle transport and organelle identity revealing both highly conserved components and lineage-specific innovations. Recently, endomembrane components with a broad, but patchy, distribution have been observed as well, pieces that are missing from our cell biological and evolutionary models of membrane trafficking. These data together allow for new insights into the history and forces that shape the evolution of this critical cell biological system.
Current Opinion in Cell Biology | 2014
Damien P. Devos; Ralph Gräf; Mark C. Field
Highlights • The nuclear pore complex is well conserved, with some regions of divergence.• The nuclear lamina appears quite variable between major supergroups.• Centrosomes are ancient structures, but with complex evolutionary history.• There is evidence for prokaryotic ancestors of some nuclear components.• Analysis of divergent organisms is essential to fully understand nuclear biology and its origins.
Cellular Microbiology | 2013
Lucy Glover; Sebastian Hutchinson; Sam Alsford; Richard McCulloch; Mark C. Field; David Horn
African trypanosomes are lethal human and animal parasites that use antigenic variation for evasion of host adaptive immunity. To facilitate antigenic variation, trypanosomes dedicate approximately one third of their nuclear genome, including many minichromosomes, and possibly all sub‐telomeres, to variant surface glycoprotein (VSG) genes and associated sequences. Antigenic variation requires transcription of a single VSG by RNA polymerase I (Pol‐I), with silencing of other VSGs, and periodic switching of the expressed gene, typically via DNA recombination with duplicative translocation of a new VSG to the active site. Thus, telomeric location, epigenetic controls and monoallelic transcription by Pol‐I at an extranucleolar site are prominent features of VSGs and their expression, with telomeres, chromatin structure and nuclear organization all making vitally important contributions to monoallelic VSG expression control and switching. We discuss VSG transcription, recombination and replication control within this chromosomal and sub‐nuclear context.
Trends in Parasitology | 2014
Paul T. Manna; Cordula Boehm; Ka Fai Leung; Senthil Kumar A. Natesan; Mark C. Field
Highlights • Variant surface glycoprotein (VSG) is a paradigm for antigenic variation.• VSG provides a mechanism for immune evasion.• Rapid transport, turnover, and endocytosis contribute to VSG function.• VSG has provided, and continues to offer, important insights into trypanosome biology.
Mitochondrion | 2014
Emilie Perez; Marie Lapaille; Hervé Degand; Laura Cilibrasi; Alexa Villavicencio-Queijeiro; Pierre Morsomme; Diego González-Halphen; Mark C. Field; Claire Remacle; Denis Baurain; Pierre Cardol
The mitochondrion is an essential organelle for the production of cellular ATP in most eukaryotic cells. It is extensively studied, including in parasitic organisms such as trypanosomes, as a potential therapeutic target. Recently, numerous additional subunits of the respiratory-chain complexes have been described in Trypanosoma brucei and Trypanosoma cruzi. Since these subunits had apparently no counterparts in other organisms, they were interpreted as potentially associated with the parasitic trypanosome lifestyle. Here we used two complementary approaches to characterise the subunit composition of respiratory complexes in Euglena gracilis, a non-parasitic secondary green alga related to trypanosomes. First, we developed a phylogenetic pipeline aimed at mining sequence databases for identifying homologues to known respiratory-complex subunits with high confidence. Second, we used MS/MS proteomics after two-dimensional separation of the respiratory complexes by Blue Native- and SDS-PAGE both to confirm in silico predictions and to identify further additional subunits. Altogether, we identified 41 subunits that are restricted to E. gracilis, T. brucei and T. cruzi, along with 48 classical subunits described in other eukaryotes (i.e. plants, mammals and fungi). This moreover demonstrates that at least half of the subunits recently reported in T. brucei and T. cruzi are actually not specific to Trypanosomatidae, but extend at least to other Euglenozoa, and that their origin and function are thus not specifically associated with the parasitic lifestyle. Furthermore, preliminary biochemical analyses suggest that some of these additional subunits underlie the peculiarities of the respiratory chain observed in Euglenozoa.