Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark C. Jordan is active.

Publication


Featured researches published by Mark C. Jordan.


Plant Physiology | 2011

Brachypodium as a model for the grasses: Today and the future

Jelena Brkljacic; Erich Grotewold; Randy Scholl; Todd C. Mockler; David F. Garvin; Philippe Vain; Thomas P. Brutnell; Richard Sibout; Michael W. Bevan; Hikmet Budak; Ana L. Caicedo; Caixia Gao; Yong-Qiang Q. Gu; Samuel P. Hazen; Ben F. Holt; Shin-Young Hong; Mark C. Jordan; Antonio J. Manzaneda; Thomas Mitchell-Olds; Keiichi Mochida; Luis A. J. Mur; Chung-Mo Park; John C. Sedbrook; Michelle Watt; Shao Jian Zheng; John P. Vogel

Over the past several years, Brachypodium distachyon (Brachypodium) has emerged as a tractable model system to study biological questions relevant to the grasses. To place its relevance in the larger context of plant biology, we outline here the expanding adoption of Brachypodium as a model grass and compare this to the early history of another plant model, Arabidopsis thaliana. In this context, Brachypodium has followed an accelerated path in which the development of genomic resources, most notably a whole genome sequence, occurred concurrently with the generation of other experimental tools (e.g. highly efficient transformation and large collections of natural accessions). This update provides a snapshot of available and upcoming Brachypodium resources and an overview of the community including the trajectory of Brachypodium as a model grass.


Plant Molecular Biology | 2007

Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family

Sylvie Cloutier; Brent McCallum; Caroline Loutre; Travis W. Banks; Thomas Wicker; Catherine Feuillet; Beat Keller; Mark C. Jordan

In hexaploid wheat, leaf rust resistance gene Lr1 is located at the distal end of the long arm of chromosome 5D. To clone this gene, an F1-derived doubled haploid population and a recombinant inbred line population from a cross between the susceptible cultivar AC Karma and the resistant line 87E03-S2B1 were phenotyped for resistance to Puccinia triticina race 1-1 BBB that carries the avirulence gene Avr1. A high-resolution genetic map of the Lr1 locus was constructed using microsatellite, resistance gene analog (RGA), BAC end (BE), and low pass (LP) markers. A physical map of the locus was constructed by screening a hexaploid wheat BAC library from cultivar Glenlea that is known to have Lr1. The locus comprised three RGAs from a gene family related to RFLP marker Xpsr567. Markers specific to each paralog were developed. Lr1 segregated with RGA567-5 while recombinants were observed for the other two RGAs. Transformation of the susceptible cultivar Fielder with RGA567-5 demonstrated that it corresponds to the Lr1 resistance gene. In addition, the candidate gene was also confirmed by virus-induced gene silencing. Twenty T1 lines from resistant transgenic line T0-938 segregated for resistance, partial resistance and susceptibility to Avr1 corresponding to a 1:2:1 ratio for a single hemizygous insertion. Transgene presence and expression correlated with the phenotype. The resistance phenotype expressed by Lr1 seemed therefore to be dependant on the zygosity status. T3-938 sister lines with and without the transgene were further tested with 16 virulent and avirulent rust isolates. Rust reactions were all as expected for Lr1 thereby providing additional evidence toward the Lr1 identity of RGA567-5. Sequence analysis of Lr1 indicated that it is not related to the previously isolated Lr10 and Lr21 genes and unlike these genes, it is part of a large gene family.


Theoretical and Applied Genetics | 2002

A constitutive gene expression system derived from the tCUP cryptic promoter elements

Kamal Malik; Keqiang Wu; X.-Q. Li; Teresa Martin-Heller; Ming Hu; Elizabeth Foster; Lining Tian; C. Wang; Kerry Ward; Mark C. Jordan; Daniel C. W. Brown; S. Gleddie; D. Simmonds; S. Zheng; John Simmonds; Brian Miki

Abstract.A limited number of constitutive promoters have been used to direct transgene expression in plants and they are often derived from non-plant sources. Here, we describe novel gene-regulatory elements which are associated with a cryptic constitutive promoter from tobacco, tCUP, and modifications that were made to create a strong gene-expression system that is effective across all living cell types from a wide range of plant species, including several important crops (Arabidopsis, canola, flax, alfalfa, tobacco). The tCUP 5′ untranslated region was mutated to eliminate translational interference by upstream ATGs, and the influence of the Kozak consensus sequence on the levels of a β-glucuronidase (GUS) reporter gene activity was demonstrated. These modifications resulted in expression that was greatly enhanced in all organs. A TATA consensus sequence was added to the core promoter to complement an existing Initiator (Inr) sequence. Although this addition was known to elevate core promoter activity by 3-fold the additive effect on the overall gene-expression system was marginal in all of the transgenic plants tested. Two transcriptional enhancers were identified and the region containing them were oligomerized, yielding a significant increase in marker gene-expression in some but not all plant species. In general, the enhanced tCUP gene-expression system generated levels of GUS activity which exceeded that of the 35S promoter in most plant species and the elevation in activity occurred uniformly among the various plant organs. The potential benefit of cryptic elements for the construction of gene-expression systems for crop species is discussed


PLOS ONE | 2013

Regulation of Wheat Seed Dormancy by After-Ripening Is Mediated by Specific Transcriptional Switches That Induce Changes in Seed Hormone Metabolism and Signaling

Aihua Liu; Feng Gao; Yuri Kanno; Mark C. Jordan; Yuji Kamiya; Mitsunori Seo; Belay T. Ayele

Treatments that promote dormancy release are often correlated with changes in seed hormone content and/or sensitivity. To understand the molecular mechanisms underlying the role of after-ripening (seed dry storage) in triggering hormone related changes and dormancy decay in wheat (Triticum aestivum), temporal expression patterns of genes related to abscisic acid (ABA), gibberellin (GA), jasmonate and indole acetic acid (IAA) metabolism and signaling, and levels of the respective hormones were examined in dormant and after-ripened seeds in both dry and imbibed states. After-ripening mediated developmental switch from dormancy to germination appears to be associated with declines in seed sensitivity to ABA and IAA, which are mediated by transcriptional repressions of PROTEIN PHOSPHATASE 2C, SNF1-RELATED PROTEIN KINASE2, ABA INSENSITIVE5 and LIPID PHOSPHATE PHOSPHTASE2, and AUXIN RESPONSE FACTOR and RELATED TO UBIQUITIN1 genes. Transcriptomic analysis of wheat seed responsiveness to ABA suggests that ABA inhibits the germination of wheat seeds partly by repressing the transcription of genes related to chromatin assembly and cell wall modification, and activating that of GA catabolic genes. After-ripening induced seed dormancy decay in wheat is also associated with the modulation of seed IAA and jasmonate contents. Transcriptional control of members of the ALLENE OXIDE SYNTHASE, 3-KETOACYL COENZYME A THIOLASE, LIPOXYGENASE and 12-OXOPHYTODIENOATE REDUCTASE gene families appears to regulate seed jasmonate levels. Changes in the expression of GA biosynthesis genes, GA 20-OXIDASE and GA 3-OXIDASE, in response to after-ripening implicate this hormone in enhancing dormancy release and germination. These findings have important implications in the dissection of molecular mechanisms underlying regulation of seed dormancy in cereals.


Transgenic Research | 2015

Genetic basis and detection of unintended effects in genetically modified crop plants

Gregory S. Ladics; Andrew Bartholomaeus; Phil Bregitzer; Nancy Doerrer; Alan Gray; Thomas Holzhauser; Mark C. Jordan; Paul Keese; Esther J. Kok; Phil Macdonald; Wayne A. Parrott; Laura Privalle; Alan Raybould; Seung Y. Rhee; Elena A. Rice; Jörg Romeis; Justin N. Vaughn; Jean-Michel Wal; Kevin C. Glenn

In January 2014, an international meeting sponsored by the International Life Sciences Institute/Health and Environmental Sciences Institute and the Canadian Food Inspection Agency titled “Genetic Basis of Unintended Effects in Modified Plants” was held in Ottawa, Canada, bringing together over 75 scientists from academia, government, and the agro-biotech industry. The objectives of the meeting were to explore current knowledge and identify areas requiring further study on unintended effects in plants and to discuss how this information can inform and improve genetically modified (GM) crop risk assessments. The meeting featured presentations on the molecular basis of plant genome variability in general, unintended changes at the molecular and phenotypic levels, and the development and use of hypothesis-driven evaluations of unintended effects in assessing conventional and GM crops. The development and role of emerging “omics” technologies in the assessment of unintended effects was also discussed. Several themes recurred in a number of talks; for example, a common observation was that no system for genetic modification, including conventional methods of plant breeding, is without unintended effects. Another common observation was that “unintended” does not necessarily mean “harmful”. This paper summarizes key points from the information presented at the meeting to provide readers with current viewpoints on these topics.


Plant Biotechnology Journal | 2012

Transcriptional programs regulating seed dormancy and its release by after‐ripening in common wheat (Triticum aestivum L.)

Feng Gao; Mark C. Jordan; Belay T. Ayele

Seed dormancy is an important agronomic trait in wheat (Trticum aestivum). Seeds can be released from a physiologically dormant state by after-ripening. To understand the molecular mechanisms underlying the role of after-ripening in conferring developmental switches from dormancy to germination in wheat seeds, we performed comparative transcriptomic analyses between dormant (D) and after-ripened (AR) seeds in both dry and imbibed states. Transcriptional activation of genes represented by a core of 22 and 435 probesets was evident in the dry and imbibed states of D seeds, respectively. Furthermore, two-way ANOVA analysis identified 36 probesets as specifically regulated by dormancy. These data suggest that biological functions associated with these genes are involved in the maintenance of seed dormancy. Expression of genes encoding protein synthesis/activity inhibitors was significantly repressed during after-ripening, leading to dormancy decay. Imbibing AR seeds led to transcriptional activation of distinct biological processes, including those related to DNA replication, nitrogen metabolism, cytoplasmic membrane-bound vesicle, jasmonate biosynthesis and cell wall modification. These after-ripening-mediated transcriptional programs appear to be regulated by epigenetic mechanisms. Clustering of our microarray data produced 16 gene clusters; dormancy-specific probesets and abscisic acid (ABA)-responsive elements were significantly overrepresented in two clusters, indicating the linkage of dormancy in wheat with that of seed sensitivity to ABA. The role of ABA signalling in regulating wheat seed dormancy was further supported by the down-regulation of ABA response-related probesets in AR seeds and absence of differential expression of ABA metabolic genes between D and AR seeds.


Plant Biotechnology Journal | 2013

Integrated analysis of seed proteome and mRNA oxidation reveals distinct post‐transcriptional features regulating dormancy in wheat (Triticum aestivum L.)

Feng Gao; Christof Rampitsch; Vijaya R. Chitnis; Gavin Humphreys; Mark C. Jordan; Belay T. Ayele

Wheat seeds can be released from a dormant state by after-ripening; however, the underlying molecular mechanisms are still mostly unknown. We previously identified transcriptional programmes involved in the regulation of after-ripening-mediated seed dormancy decay in wheat (Triticum aestivum L.). Here, we show that seed dormancy maintenance and its release by dry after-ripening in wheat is associated with oxidative modification of distinct seed-stored mRNAs that mainly correspond to oxidative phosphorylation, ribosome biogenesis, nutrient reservoir and α-amylase inhibitor activities, suggesting the significance of post-transcriptional repression of these biological processes in regulating seed dormancy. We further show that after-ripening induced seed dormancy release in wheat is mediated by differential expression of specific proteins in both dry and hydrated states, including those involved in proteolysis, cellular signalling, translation and energy metabolism. Among the genes corresponding to these proteins, the expression of those encoding α-amylase/trypsin inhibitor and starch synthase appears to be regulated by mRNA oxidation. Co-expression analysis of the probesets differentially expressed and oxidized during dry after-ripening along with those corresponding to proteins differentially regulated between dormant and after-ripened seeds produced three co-expressed gene clusters containing more candidate genes potentially involved in the regulation of seed dormancy in wheat. Two of the three clusters are enriched with elements that are either abscisic acid (ABA) responsive or recognized by ABA-regulated transcription factors, indicating the association between wheat seed dormancy and ABA sensitivity.


In Vitro Cellular & Developmental Biology – Plant | 2001

Callus formation and plant regeneration from immature and mature embryos of rye (Secale cereale L.)

Kerry Ward; Mark C. Jordan

SummaryAn efficient protocol was developed to regenerate entire plants from immature embryos of elite genotypes of rye as a prerequisite to plant transformation. Three winter genotypes and one spring genotype were tested using both immature and mature embryos as explants. Four types of callus initiation media and five kinds of regeneration media were tested in all possible combinations. Immature embryos gave much higher levels of plant regeneration than mature embryos, but mature embryos could be induced to regenerate plants for all genotypes and media tested, although at low levels. A minimum stage of embryo development must be reached before embryos can be cultured successfully. Genotypic effects were less pronounced than those reported for inbred cereal species such as wheat and barley, but there was an effect of genotype on percentage of callus formation. There was a significant interaction between genotype and initiation media. Composition of the initiation media affected both the percentage of callus formation from embryos and subsequent frequencies of plant regeneration. Composition of the regeneration media had no effect on level of plant regeneration. Immature embryos of all genotypes tested could be induced to produce 90–100% callus on appropriate initiation media and all regenerated shoots from approximately one-half to three-quarters of the calluses produced.


BMC Plant Biology | 2016

Lignin biosynthesis in wheat (Triticum aestivum L.): its response to waterlogging and association with hormonal levels

Tran-Nguyen Nguyen; SeungHyun Son; Mark C. Jordan; David B. Levin; Belay T. Ayele

BackgroundLignin is an important structural component of plant cell wall that confers mechanical strength and tolerance against biotic and abiotic stressors; however it affects the use of biomass such as wheat straw for some industrial applications such as biofuel production. Genetic alteration of lignin quantity and quality has been considered as a viable option to overcome this problem. However, the molecular mechanisms underlying lignin formation in wheat biomass has not been studied. Combining molecular and biochemical approaches, the present study investigated the transcriptional regulation of lignin biosynthesis in two wheat cultivars with varying lodging characteristics and also in response to waterlogging. It also examined the association of lignin level in tissues with that of plant hormones implicated in the control of lignin biosynthesis.ResultsAnalysis of lignin biosynthesis in the two wheat cultivars revealed a close association of lodging resistance with internode lignin content and expression of 4-coumarate:CoA ligase1 (4CL1), p-coumarate 3-hydroxylase1 (C3H1), cinnamoyl-CoA reductase2 (CCR2), ferulate 5-hydroxylase2 (F5H2) and caffeic acid O-methyltransferase2 (COMT2), which are among the genes highly expressed in wheat tissues, implying the importance of these genes in mediating lignin deposition in wheat stem. Waterlogging of wheat plants reduced internode lignin content, and this effect is accompanied by transcriptional repression of three of the genes characterized as highly expressed in wheat internode including phenylalanine ammonia-lyase6 (PAL6), CCR2 and F5H2, and decreased activity of PAL. Expression of the other genes was, however, induced by waterlogging, suggesting their role in the synthesis of other phenylpropanoid-derived molecules with roles in stress responses. Moreover, difference in internode lignin content between cultivars or change in its level due to waterlogging is associated with the level of cytokinin.ConclusionLodging resistance, tolerance against biotic and abiotic stresses and feedstock quality of wheat biomass are closely associated with its lignin content. Therefore, the findings of this study provide important insights into the molecular mechanisms underlying lignin formation in wheat, an important step towards the development of molecular tools that can facilitate the breeding of wheat cultivars for optimized lignin content and enhanced feedstock quality without affecting other lignin-related agronomic benefits.


Physiological and Molecular Plant Pathology | 2003

MALDI-Qq-TOF-MS and transient gene expression analysis indicated co-enhancement of β-1,3-glucanase and endochitinase by tMEK2 and the involvement of divergent pathways

Tim Xing; Chris Rampitsch; Brian Miki; Wayne Mauthe; Jo-Ann Stebbing; Kamal Malik; Mark C. Jordan

Abstract A mitogen-activated protein kinase (MAPK) pathway has been demonstrated as a key pathway in plant defense against pathogen attacks. With proteomics approaches, we specifically studied activation events downstream of a MAPK kinase, tMEK2, in tomato. Overexpression of a constitutively activated tomato MAPK kinase gene ( tMEK2 MUT ) enhanced resistance of transgenic tomato lines to the virulent bacterial pathogen Pseudomonas syringae pv. tomato . Pathogenesis-related genes, PR1b1 , β-1,3-glucanase, and endochitinase were up-regulated by tMEK2 MUT . Two-dimensional electrophoresis and matrix-assisted laser desorption/ionisation-time-of-flight-mass spectrometry analysis of total soluble leaf proteins indicated that β-1,3-glucanase and endochitinase are among the up-regulated proteins in these transgenic plants. Co-expression studies using a transient gene expression system have indicated that β-1,3-glucanase and endochitinase genes up-regulated by tMEK2 MUT were down-regulated by different specific phosphatases through dephosphorylation of certain downstream signaling molecules. Our observations indicate that increased products of β-1,3-glucanase and endochitinase genes downstream of tMEK2 may play an important role in achieving disease resistance.

Collaboration


Dive into the Mark C. Jordan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Gao

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar

Sylvie Cloutier

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Christof Rampitsch

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Daryl J. Somers

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Travis W. Banks

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Brent McCallum

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Brian Miki

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Curt A. McCartney

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Curtis J. Pozniak

University of Saskatchewan

View shared research outputs
Researchain Logo
Decentralizing Knowledge