Mark Cave
British Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark Cave.
Science of The Total Environment | 2011
Joanna Wragg; Mark Cave; Nicholas T. Basta; Esther F.A. Brandon; Stan W. Casteel; Sébastien Denys; Christian Grøn; Agnes G. Oomen; Kenneth J. Reimer; Karine Tack; Tom Van de Wiele
The Bioaccessibility Research Group of Europe (BARGE) has carried out an inter-laboratory trial of a proposed harmonised in vitro physiologically based ingestion bioaccessibility procedure for soils, called the Unified BARGE Method (UBM). The UBM includes an initial saliva phase and simulated stomach and intestine compartments. The trial involved the participation of seven laboratories (five European and two North American) providing bioaccessibility data for As (11 samples), Cd (9 samples) and Pb (13 samples) using soils with in vivo relative bioavailability data measured using a swine model. The results of the study were compared with benchmark criteria for assessing the suitability of the UBM to provide data for human health risk assessments. Mine waste and slag soils containing high concentrations of As caused problems of poor repeatability and reproducibility which were alleviated when the samples were run at lower soil to solution ratios. The study showed that the UBM met the benchmark criteria for both the stomach and stomach & intestine phase for As. For Cd, three out of four criteria were met for the stomach phase but only one for the stomach & intestine phase. For Pb two, out of four criteria were met for the stomach phase and none for the stomach & intestine phase. However, the study recommends tighter control of pH in the stomach phase extraction to improve between-laboratory variability, more reproducible in vivo validation data and that a follow up inter-laboratory trial should be carried out.
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2007
T. Van de Wiele; Agnes G. Oomen; Joanna Wragg; Mark Cave; Mans Minekus; A. Hack; Christa Cornelis; Cathy J.M. Rompelberg; L. L. De Zwart; Ben Klinck; J. Van Wijnen; Willy Verstraete; Adriënne J.A.M. Sips
This paper presents a multi-laboratory comparison study of in vitro models assessing bioaccessibility of soil-bound lead in the human gastrointestinal tract under simulated fasted and fed conditions. Oral bioavailability data from a previous human in vivo study on the same soil served as a reference point. In general, the bioaccessible lead fraction was significantly (P < 0.05) different between the in vitro methods and ranged for the fasted models from 2% to 33% and for the fed models from 7% to 29%. The in vivo bioavailability data from literature were 26.2 ± 8.1% for fasted conditions, compared to 2.5 ± 1.7% for fed conditions. Under fed conditions, all models returned higher bioaccessibility values than the in vivo bioavailability; whereas three models returned a lower bioaccessibility than bioavailability under fasted conditions. These differences are often due to the methods digestion parameters that need further optimization. An important outcome of this study was the determination that the method for separating the bioaccessible lead from the non-bioaccessible fraction (centrifugation, filtration, ultrafiltration) is crucial for the interpretation of the results. Bioaccessibility values from models that use more stringent separation methods better approximate in vivo bioavailability results, yet at the expense of the level of conservancy. We conclude from this study that more optimization of in vitro digestion models is needed for use in risk assessment. Moreover, attention should be paid to the laboratory separation method since it largely influences what fraction of the contaminant is considered bioaccessible.
Analyst | 1982
L. Ebdon; Mark Cave
The analytical performance of different pneumatic nebulisers and cloud chambers for inductively coupled plasma emission spectrometry is reported. A vortex cloud chamber and a double-pass cloud chamber were compared for use with concentric glass nebulisers. An all-plastic double-pass cloud chamber was preferred. Two new nebulisers for solutions containing high levels of dissolved solids or slurries are described. One of these, machined entirely from inert plastic, gave an improved performance compared with a glass concentric nebuliser and no problems were encountered with the nebulisation of solutions containing 20%m/V of dissolved solids or slurries.
Chemosphere | 2011
Damien Lorenzi; Jane Entwistle; Mark Cave; John R. Dean
The determination of sixteen polycyclic aromatic hydrocarbons in urban street dust has been done. Samples were collected from 12 sampling locations in a city centre location (Newcastle upon Tyne, north east England) and extracted using in situ pressurised fluid extraction followed by gas chromatography mass spectrometry. From the results it was possible to identify three groups, with respect to PAH concentration, with PAH contents ranging between 0.6-2.3 mg kg(-1), 15.6-22.5 mg kg(-1) and 36.1-46.0 mg kg(-1). The total PAH content of samples from these sampling sites has been compared to 22 urban locations around the world; comparable levels were found in these samples compared to the other cities around the world. The potential source of PAHs has been investigated by investigating the proportion of pyrogenic and petrogenic material in urban street dust using specific individual PAH ratios. The results indicate that the PAH content of urban street dust from the chosen sites are more likely to be due to pyrogenic sources i.e. vehicle exhaust emissions. The particle size fractions (<63 μm; 63-125 μm; 125-250 μm; 250-500 μm; 500-1,000 μm; and 1,000-2,000 μm) of individual PAHs in three selected sampling sites was investigated. In two of the selected sites the PAH content was independent of particle size whereas in sampling site 10 elevated PAH levels are noted in the <63 μm size fraction. Sampling site 10 is located at the junction of three road tributaries which are used as major access points to the east of the city centre. Finally, the potential health risk for unintentional consumption of PAHs was assessed in terms of a mean daily intake (based on an ingestion rate of 100 mg d(-1)). It was found that all 4-6 membered ring PAHs had concentrations in excess of the mean daily intake thereby reflecting a potential health risk, particularly in the smallest size particle fractions.
Analytica Chimica Acta | 1980
L. Ebdon; Mark Cave; D.J. Mowthorpe
Abstract Meaningful comparisons of the analytical performances of different inductively coupled plasmas necessitate preliminary optimisation. The variable step-size simplex procedure is applied to optimise signal-to-background ratios for the five continuously variable operating parameters of a plasma, i.e. the power in the plasma, the observation height, and the injector, plasma and coolant gas flow rates. A series of univariate searches confirmed the results and also illustrated the importance of the various parameters. Results are presented for the manganese 257.6-nm ion line in both argon- and nitrogen-cooled plasmas and for the arsenic 228.8-nm atom line with argon coolant. Optimal power levels in these three cases were identified as 0.59, >1.2 and 0.57 kW, respectively.
Environmental Science & Technology | 2010
Mark Cave; Joanna Wragg; I. Harrison; Christopher H. Vane; Tom Van de Wiele; Eva De Groeve; C. Paul Nathanail; Matthew Ashmore; Russell S. Thomas; Jamie Robinson; Paddy Daly
A fed state in vitro methodology capable of use in commercial testing laboratories has been developed for measuring the human ingestion bioaccessibility of polyaromatic hydrocarbons (PAHs) in soil (Fed ORganic Estimation human Simulation Test- FOREhST). The protocol for measuring PAHs in the simulated gastro-intestinal fluids used methanolic KOH saponification followed by a combination of polymeric sorbent solid phase extraction and silica sorbent cartridges for sample cleanup and preconcentration. The analysis was carried out using high pressure liquid chromatography with fluorescence detection. The repeatability of the method, assessed by the measurement of the bioaccessibility of 6 PAHs (benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[ah]anthracene, and indeno[1,2,3-c,d]pyrene) in eleven gas works soils, was approximately 10% RSD. The method compared well with the results from an independent dynamic human simulation reactor comprising of the stomach, duodenal and colon compartments tested on the same soils. The measured bioaccessible fraction of the soils varied from 10-60% for soils containing 10-300 mg kg(-1) PAH (the sum of the six studied) with total organic carbon concentrations in the soils ranging from 1-13%. A multiple regression model showed that the PAH bioaccessible fraction could be explained using the PAH compound, the soil type and the total PAH to soil organic carbon content. The method described here has potential for site specific detailed quantitative risk assessment either to modify the risk estimation or to contribute to the risk evaluation.
Journal of Geochemical Exploration | 1992
Hani Khoury; Elias Salameh; I.D. Clark; P. Fritz; W. Bajjali; A.E. Milodowski; Mark Cave; W.R. Alexander
Abstract The highly alkaline springs of the Maqarin area of northern Jordan are currently under examination as part of an international project testing the models used to analyse the safety of repositories for low and intermediate level radioactive waste (L/ILW). The Maqarin area contains a rock-groundwater system which is an ideal natural analogue of a concrete-filled L/ILW repository emplaced in a sedimentary host rock. The high pH (12.5) groundwaters at this site are the product of interaction with naturally occurring cement minerals and not of the alteration of ultramafic minerals. Stable isotope data for the hyperalkaline groundwaters lie below both the local meteoric water line and the eastern Mediterranean water line. At least part of the shift appears to be the result of groundwater interaction with the cement minerals. This paper introduces the site of the natural analogue study and, in presenting novel data on the chemistry and stable isotopic signature of the groundwater, provides background information which is used in a companion paper (Alexander et al., 1992) on testing the predictive capabilities of geochemical thermodynamic codes (and their associated databases) which will be utilised as part of the safety assessment of a L/ILW repository.
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2007
Joanna Wragg; Mark Cave; Paul Nathanail
Twenty samples from soils developed over the Northampton Sand ironstone formation were collected from, in and around the town of Wellingborough, Northamptonshire, UK. The total arsenic (As) content ranged from ca. 20–100 mg kg− 1and the bioaccessible As content, as measured by a physiologically based in vitro extraction test, ranged from 1 to 6 mg kg− 1. A chemometric algorithm for mixture resolution, when applied to total element and total organic carbon concentration of the soils, was able to identify chemically distinct soil constituents and their associated As content. Multiple linear regression (MLR) modelling, using the As content of the intrinsic soil constituents and their first order interactions as independent variables, was able to predict the bioaccessible As content of the soils (R2 = 0.85) with an uncertainty of 1.33 mg kg− 1. Although the MLR model showed that the interactions between the soil constituents were the key factors controlling the bioaccessible fraction in each soil most of the total As was found to be bound to an Fe oxide soil constituent. The model predictions shown are currently only valid for the geological and soil chemical setting investigated here, extrapolation to other geological settings would require additional investigations.
Geochemistry-exploration Environment Analysis | 2004
Mark Cave; A.E. Milodowski; Ellen N. Friel
A sequential extraction methodology, designed to measure the solid phase partitioning of metals in soils and sediments, is described. The method uses centrifugation to pass increasing concentrations of HNO3 through the sample, followed by ICP-AES analysis of major and trace elements of the extracts. A data-processing algorithm is used to identify the number of physico-chemical components extracted, their composition and the proportion of each in each extract. The algorithm has been successfully tested on a synthetic data set and the combination of the extraction methodology and data-processing algorithm have been tested on a contaminated soil sample (NIST SRM 2710). The 14 extracts from each duplicate experiment were analysed for 19 elements and data analysis identified nine chemically distinct soil components: pore-water residual solutes; organic, easily exchangeable; a Cu–Zn dominated phase; a Pb-dominated phase; amorphous Fe oxide/oxyhydroxide; crystalline Fe oxide; Fe–Ti oxide; and Mn oxide.
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2013
Iris Koch; Kenneth J. Reimer; Martine I. Bakker; Nicholas T. Basta; Mark Cave; Sébastien Denys; Matt Dodd; Beverly Anne Hale; Rob Irwin; Yvette W. Lowney; Margo M. Moore; Viviane Paquin; Pat E. Rasmussen; Theresa Repaso-Subang; Gladys L. Stephenson; Steven D. Siciliano; Joanna Wragg; Gérald J. Zagury
Bioaccessibility is a measurement of a substances solubility in the human gastro-intestinal system, and is often used in the risk assessment of soils. The present study was designed to determine the variability among laboratories using different methods to measure the bioaccessibility of 24 inorganic contaminants in one standardized soil sample, the standard reference material NIST 2710. Fourteen laboratories used a total of 17 bioaccessibility extraction methods. The variability between methods was assessed by calculating the reproducibility relative standard deviations (RSDs), where reproducibility is the sum of within-laboratory and between-laboratory variability. Whereas within-laboratory repeatability was usually better than (<) 15% for most elements, reproducibility RSDs were much higher, indicating more variability, although for many elements they were comparable to typical uncertainties (e.g., 30% in commercial laboratories). For five trace elements of interest, reproducibility RSDs were: arsenic (As), 22–44%; cadmium (Cd), 11–41%; Cu, 15–30%; lead (Pb), 45–83%; and Zn, 18–56%. Only one method variable, pH, was found to correlate significantly with bioaccessibility for aluminum (Al), Cd, copper (Cu), manganese (Mn), Pb and zinc (Zn) but other method variables could not be examined systematically because of the study design. When bioaccessibility results were directly compared with bioavailability results for As (swine and mouse) and Pb (swine), four methods returned results within uncertainty ranges for both elements: two that were defined as simpler (gastric phase only, limited chemicals) and two were more complex (gastric + intestinal phases, with a mixture of chemicals).