Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Collinge is active.

Publication


Featured researches published by Mark Collinge.


Journal of Immunotoxicology | 2012

Developmental immunotoxicity (DIT) testing of pharmaceuticals: current practices, state of the science, knowledge gaps, and recommendations.

Mark Collinge; Burns-Naas La; Chellman Gj; Thomas T. Kawabata; Wendy J. Komocsar; Piccotti; Shenton J; Wierda D

The development and regulatory approval of immunomodulatory pharmaceuticals to treat many human diseases has increased significantly over the last two decades. As discussed by FDA and ICH guidelines, all human pharmaceuticals in development should be evaluated for potential adverse effects on the immune system. Developmental immunotoxicology (DIT) focuses on the concern that early-life (during pre-/post-natal development) exposure to agents which target the immune system may result in enhanced susceptibility to immune-related disease (e.g., infection, autoimmunity, and cancer, particularly leukemia) compared to adults, unique effects not observed in adults, or more persistent effects in comparison to those following adult exposure. This article provides a substantive review of the literature and presents detailed considerations for DIT testing strategies with a specific focus on pharmaceuticals and biopharmaceuticals. In this regard, differences between small molecule and large molecule therapeutics will be considered, along with recommendations for best practices in the assessment of DIT during drug development. In addition, gaps in the DIT knowledge base and current testing strategies are identified. Finally, a summary of an ILSI-HESI-ITC sponsored Workshop conducted in 2010, entitled ‘Developmental Immunotoxicity Testing of Pharmaceuticals’ will be presented. This Workshop consisted of participants from the pharmaceutical, biotechnology, academic, and regulatory sectors, where many of the issues relating to DIT outlined in this review were discussed, key points of consensus reached, and current gaps in the science identified.


Toxicologic Pathology | 2014

Comparative Nonclinical Assessments of the Proposed Biosimilar PF-05280586 and Rituximab (MabThera®)

Anne M. Ryan; Sharon A. Sokolowski; Chee-Keng Ng; Norimitsu Shirai; Mark Collinge; Amy C. Shen; Joshua Arrington; Zaher A. Radi; Thomas Cummings; Stephen A. Ploch; Sarah A. Stephenson; Niraj K. Tripathi; Susan Hurst; Gregory L. Finch; Michael W. Leach

Comparative nonclinical studies were conducted with the proposed biosimilar PF-05280586 and rituximab-EU (MabThera®). In side-by-side analyses, peptide maps and complement-dependent cytotoxicity assay results were similar. Sexually-mature cynomolgus monkeys were administered PF-05280586 or rituximab-EU as a single dose of 0, 2, 10, or 20 mg/kg on day 1 and observed for 92 days (single-dose study) or as 5 weekly injections of 0 or 20 mg/kg and necropsied on day 30, the day after the 5th dose, or on day 121 (repeat-dose study). The pharmacokinetic and pharmacodynamic profiles for both molecules were similar. Marked depletion of peripheral blood B cells 4 days after dosing was followed by near or complete repletion (single-dose study) or partial repletion (repeat-dose study). In the single-dose study, anti-drug antibodies (ADA) were detected by day 29 in all animals administered PF-05280586 or rituximab-EU and persisted through day 85, the last day tested. In the repeat-dose study, ADA were detected on day 121 in 50% of animals administered PF-05280586 or rituximab-EU. Both molecules were well tolerated at all doses. In all endpoints evaluated, PF-05280586 exhibited similarity to rituximab-EU.


Toxicologic Pathology | 2010

Toxicopathology of the Developing Immune System Investigative and Development Strategies

Daniel Weinstock; David B. Lewis; George A. Parker; Joseph Beyer; Mark Collinge; Thomas P. Brown; Noel Dybdal

Developmental immunotoxicity (DIT) has gained attention with the recognition that environmental chemicals can potentially affect the developing immune system and the incidence of childhood allergic diseases. Preclinical safety assessment of pharmaceuticals for men and women of childbearing potential as well as for pediatric and juvenile indications may require DIT assessments. Draft documents from environmental and chemical regulatory agencies propose strategies that use the rat as a test species and incorporate histopathology and functional testing as endpoints. While there are no guidelines for DIT assessment of pharmaceuticals, current discussions suggest that combining immunotoxicity and developmental and reproductive toxicology studies may serve this purpose. Knowledge of the principles and applications of DIT will facilitate participation in strategy development and effective conduct of relevant studies.


Journal of Immunotoxicology | 2010

Human lymphocyte activation assay: an in vitro method for predictive immunotoxicity testing.

Mark Collinge; Susan Cole; Patricia A. Schneider; Carol B. Donovan; Cris Kamperschroer; Thomas T. Kawabata

Preclinical immunotoxicity assessments may be performed during pharmaceutical drug development in order to identify potential cause for concern prior to use in the clinic. The in vivo T-dependent antibody response (TDAR) is widely used in this regard, given its sensitivity to known immunosuppressive compounds, but may be impractical early in drug development where quantities of test article are limited. The goal of the current work is to develop an in vitro human cell-based assay that is sensitive to immunosuppression, uses relatively small quantities of test article, and is simple to perform with moderate to high throughput. Ideally, this assay would require the cooperation of multiple cellular compartments to produce a response, similar to the TDAR. Although the Mishell–Dutton assay (in vitro mouse splenic sheep red blood cell response) has been used for this purpose, it shows considerable inter-laboratory variability, and rodent cells are used which leads to potential difficulty in translation of findings to humans. We have developed an assay that measures an influenza antigen-specific response using frozen-stored human peripheral blood mononuclear cells, which we have termed the human lymphocyte activation (HuLA) assay. The HuLA assay is sensitive to cyclosporine, dexamethasone, rapamycin, mycophenolic acid, and methotrexate at concentrations within their respective therapeutic ranges. Although proliferation is the primary endpoint, we demonstrate that flow cytometry approaches may be used to characterize the proliferating lymphocyte subsets. Flu antigen-specific proliferation in the HuLA assay primarily involves both CD4+ and CD8+ T-lymphocytes and B-lymphocytes, although other lymphocyte subsets also proliferate. In addition, flu-specific antibody-secreting cells can be measured in this assay by ELISPOT, a response that is also sensitive to known immunosuppressive compounds. The HuLA assay represents a relatively straightforward assay with the capability of detecting immune suppression in human cells and can be applied to compound ranking and immunotoxicity assessment.


Birth Defects Research Part B-developmental and Reproductive Toxicology | 2012

Embryo-Fetal Transfer of Bevacizumab (Avastin) in the Rat Over the Course of Gestation and the Impact of Neonatal Fc Receptor (FcRn) Binding

Mitchell Thorn; Nicole Piche-Nicholas; Donald B. Stedman; Scott Davenport; Ning Zhang; Mark Collinge; Christopher J. Bowman

BACKGROUND There is concern about embryo-fetal exposure to antibody-based biopharmaceuticals based on the increase of such therapies being prescribed to women of childbearing potential. Therefore, there is a desire to better characterize embryo-fetal exposure of these molecules. The pregnant rat is a standard model for evaluating the potential consequences of exposure but placental transfer of antibody-based biopharmaceuticals is not well understood in this model. METHODS The relative embryo-fetal distribution of an antibody-based biopharmaceutical was evaluated in the rat. Bevacizumab (Avastin) was chosen as a tool antibody since it does not have significant target binding in the rat that might influence embryo-fetal biodistribution. Avastin was labeled with a fluorescent dye, characterized, and injected into pregnant rats at different gestation ages. Labeled Avastin in fetal tissues was visualized ex vivo using an IVIS 200 (Caliper, A PerkinElmer Company, Alameda, CA). RESULTS Avastin localized to the fetus as early as 24-hr post intravenous injection of the dam, and was taken up by the fetus in a dose-dependent manner. Avastin was detectable in the developing embryo as early as gestation day 13 and continued to be transferred until the end of gestation. Fetal transfer of Avastins mutated in the portion of the antibody that binds the neonatal Fc receptor (FcRn) was tested in late gestation and was found to correlate with affinities of the mutant Avastin antibody to FcRn. CONCLUSIONS The novel application of this imaging technology was used to characterize the onset and duration of Avastin maternal-fetal transfer in rats and the importance of FcRn binding.


Regulatory Toxicology and Pharmacology | 2014

The T-cell-dependent antibody response assay in nonclinical studies of pharmaceuticals and chemicals: Study design, data analysis, interpretation

Hervé Lebrec; Brigitte Molinier; Darrell R. Boverhof; Mark Collinge; Wendy Freebern; Kristin L. Henson; Daniel T. Mytych; Hans D. Ochs; Ronald Wange; Yung Yang; Lei Zhou; Joshua Arrington; Marie Soleil Christin-Piché; Jacintha Shenton

The T-cell-dependent antibody response (TDAR) assay is a measure of immune function that is dependent upon the effectiveness of multiple immune processes, including antigen uptake and presentation, T cell help, B cell activation, and antibody production. It is used for risk and safety assessments, in conjunction with other toxicologic assessments, by the chemical and pharmaceutical industries, and research and regulatory agencies. It is also employed to evaluate investigational drug efficacy in animal pharmacology studies, provide evidence of biological impact in clinical trials, and evaluate immune function in patients with primary or secondary immunodeficiency diseases. Various immunization schemes, analytical methods, approaches to data analysis, and data interpretations are in use. This manuscript summarizes some recommended practices for the conduct and interpretation of the assay in animal studies.


Journal of Immunotoxicology | 2013

Validation of a Candida albicans delayed-type hypersensitivity (DTH) model in female juvenile rats for use in immunotoxicity assessments

Mark Collinge; Mitchell Thorn; Vanessa L. Peachee; Kimber L. White

Abstract Establishing an in vivo cell-mediated immunity (CMI) assay, such as the delayed-type hypersensitivity (DTH) assay, has been identified as an important gap and recommended to receive highest priority for new model development in several workshops on developmental immunotoxicity. A Candida albicans DTH model has recently been developed that has the advantage over other DTH models, which use alternative sensitizing antigens, in that antigen-specific antibodies, which may interfere with the assay, are not produced. In addition, the in vivo C. albicans DTH model was demonstrated to be more sensitive in detecting immunosuppression than DTH models using keyhole limpet hemocyanin (KLH) or sheep red blood cells as antigens, as well as some ex vivo CMI assays. While KLH and sheep red blood cells are non-physiological immunogens, C. albicans is an important human pathogen. The present studies were conducted in order to optimize and validate the C. albicans DTH model for use in developmental immunotoxicity studies using juvenile rats. Three known immunosuppressive compounds with different mechanisms of action were tested in this model, cyclosprorin A (CsA), cyclophosphamide (CPS), and dexamethasone (DEX). Animals were sensitized with formalin-fixed C. albicans on postnatal day (PND) 28 and challenged with chitosan on PND 38. Drug was administered beginning on PND 23 and continued until PND 37. Exposure to each of the three immunotoxicants resulted in statistically significant decreases in the DTH response to C. albicans-derived chitosan. Decreases in footpad swelling were observed at ≥10 mg CsA/kg/day, ≥5 mg CPS/kg/day, and ≥0.03 mg DEX/kg/day. These results demonstrate that the C. albicans DTH model, optimized for use in juvenile rats, can be used to identify immunotoxic compounds, and fills the need for a sensitive in vivo CMI model for assessments of developmental immunotoxicity. Abbreviations Ab, antibody APC, antigen presenting cell BSA, bovine serum albumin C. albicans, Candida albicans CI, challenge interval CMI, cell-mediated immunity CO, challenge only CPS, cyclophosphamide CsA, cyclosporin A CTL, cytotoxic T lymphocyte DEX, dexamethasone DIT, developmental immunotoxicity DTH, delayed-type hypersensitivity ip, intraperitoneal KLH, keyhole limpet hemocyanin MLR, mixed lymphocyte reaction OVA, ovalbumin PBS, phosphate-buffered saline PND, postnatal day sc, subcutaneous SEM, standard error of the mean SRBC, sheep red blood cells


Clinical Immunology | 2018

Reversibility of peripheral blood leukocyte phenotypic and functional changes after exposure to and withdrawal from tofacitinib, a Janus kinase inhibitor, in healthy volunteers

Kent J. Weinhold; J. Bukowski; Todd V. Brennan; Robert J. Noveck; Janet Staats; Liwen Lin; Linda Stempora; Constance Hammond; Ann Wouters; Christopher Mojcik; John B. Cheng; Mark Collinge; Michael I. Jesson; Anasuya Hazra; Pinaki Biswas; Shuping Lan; James D. Clark; Jennifer Hodge

This study evaluated the short-term effects of tofacitinib treatment on peripheral blood leukocyte phenotype and function, and the reversibility of any such effects following treatment withdrawal in healthy volunteers. Cytomegalovirus (CMV)-seropositive subjects received oral tofacitinib 10 mg twice daily for 4 weeks and were followed for 4 weeks after drug withdrawal. There were slight increases in total lymphocyte and total T-cell counts during tofacitinib treatment, and B-cell counts increased by up to 26%. There were no significant changes in granulocyte or monocyte counts, or granulocyte function. Naïve and central memory T-cell counts increased during treatment, while all subsets of activated T cells were decreased by up to 69%. T-cell subsets other than effector memory cluster of differentiation (CD)4+, activated naïve CD4+ and effector CD8+ T-cell counts and B-cell counts, normalized 4 weeks after withdrawal. Following ex vivo activation, measures of CMV-specific T-cell responses, and antigen non-specific T-cell-mediated cytotoxicity and interferon (IFN)-γ production, decreased slightly. These T-cell functional changes were most pronounced at Day 15, partially normalized while still on tofacitinib and returned to baseline after drug withdrawal. Total natural killer (NK)-cell counts decreased by 33%, returning towards baseline after drug withdrawal. NK-cell function decreased during tofacitinib treatment, but without a consistent time course across measured parameters. However, markers of NK-cell-mediated cytotoxicity, antibody-dependent cellular cytotoxicity and IFN-γ production were decreased up to 42% 1 month after drug withdrawal. CMV DNA was not detectable in whole blood, and there were no cases of herpes zoster reactivation. No new safety concerns arose. In conclusion, the effect of short-term tofacitinib treatment on leukocyte composition and function in healthy CMV+ volunteers is modest and largely reversible 4 weeks after withdrawal.


Journal of Immunotoxicology | 2015

Evaluation of a novel delayed-type hypersensitivity assay to Candida albicans in adult and neonatal rats

Mitchell Thorn; Adam W. Hudson; John M. Kreeger; Thomas T. Kawabe; Christopher J. Bowman; Mark Collinge

Abstract Delayed-type hypersensitivity (DTH) is a T-cell-mediated immune response that may be used for immunotoxicity testing in non-clinical species. However, in some cases DTH assays using T-dependent antigens may be confounded by the production of antibodies to the antigen. The authors have previously modified a DTH assay, initially validated in the mouse, for use in juvenile rats to assess the effect of immunosuppressive drugs on the developing rat immune system. The assay measures footpad swelling induced by subcutaneous footpad injection of Candida albicans (C. albicans) derived-chitosan in rats previously sensitized with C. albicans. Antibodies to chitosan are not produced in this model. However, considerable inter-animal variability inherent in the footpad swelling assay can make it difficult to precisely quantify the magnitude of the immune response and inhibition by immunosuppressants, particularly if complete suppression is not observed. This report describes the development of an ex vivo assay to assess DTH in rats using interferon (IFN)-γ production by splenocytes, obtained from rats sensitized with C. albicans, as the quantifiable measure of the DTH response. Adult and neonatal rats administered dexamethasone (DEX), a known immunosuppressant, exhibited immunosuppression as evidenced by a reduction in ex vivo IFNγ production from splenocytes challenged with C. albicans-derived chitosan. Current data indicate that the ex vivo based DTH assay is more sensitive than the conventional footpad swelling assay due to a lower background response and the ability to detect a response as early as post-natal day (PND) 12. The ex vivo based rat DTH assay offers a highly sensitive and quantitative alternative to the footpad swelling assay for the assessment of the immunotoxic potential of drugs. The increased sensitivity of the ex vivo DTH assay may be useful for identifying smaller changes in response to immunotoxic drugs, as well as detecting responses earlier in animal development.


Regulatory Toxicology and Pharmacology | 2018

Immunologic effects of chronic administration of tofacitinib, a Janus kinase inhibitor, in cynomolgus monkeys and rats – Comparison of juvenile and adult responses

Mark Collinge; Douglas J. Ball; Christopher J. Bowman; Andrea L. Nilson; Zaher A. Radi; W. Mark Vogel

ABSTRACT Tofacitinib, an oral Janus kinase (JAK) inhibitor for treatment of rheumatoid arthritis, targets JAK1, JAK3, and to a lesser extent JAK2 and TYK2. JAK1/3 inhibition impairs gamma common chain cytokine receptor signaling, important in lymphocyte development, homeostasis and function. Adult and juvenile cynomolgus monkey and rat studies were conducted and the impact of tofacitinib on immune parameters (lymphoid tissues and lymphocyte subsets) and function (T‐dependent antibody response (TDAR), mitogen‐induced T cell proliferation) assessed. Tofacitinib administration decreased circulating T cells and NK cells in juvenile and adult animals of both species. B cell decreases were observed only in rats. These changes and decreased lymphoid tissue cellularity are consistent with the expected pharmacology of tofacitinib. No differences were observed between juvenile and adult animals, either in terms of doses at which effects were observed or differential effects on immune endpoints. Lymphomas were observed in three adult monkeys. Tofacitinib impaired the primary TDAR in juvenile monkeys, although a recall response was generated. Complete or partial reversal of the effects on the immune system was observed. HighlightsEffects of tofacitinib (Janus Kinase inhibitor) on the immune system is investigated.All observed immune‐related effects are attributable to expected pharmacology.All immune effects were fully or partially reversible.No differences in tofacitinib‐related effects between juvenile and adult animals.

Collaboration


Dive into the Mark Collinge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans D. Ochs

Seattle Children's Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yung Yang

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge