Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark D. Black is active.

Publication


Featured researches published by Mark D. Black.


Psychopharmacology | 2005

Therapeutic potential of positive AMPA modulators and their relationship to AMPA receptor subunits. A review of preclinical data

Mark D. Black

BackgroundPositive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) modulators enhance glutamate transmission via the AMPA receptor by altering the rate of desensitization; alone they have no intrinsic activity. They are the only class of compounds known that may pharmacologically separate AMPA subtypes.ObjectiveThis manuscript will review preclinical work on positive AMPA modulators, with clinical examples where relevant.ResultsThe activity of these compounds appears to be determined by the AMPA receptor subunit composition. Studies have shown that splice variant and/or subunit combinations change the desensitization rate of this receptor. Also, these subunits are heterogeneously expressed across the central nervous system. Therefore, the functional outcome of different positive AMPA modulators could indeed be different. The origins of this pharmacological class come from hippocampal long-term potentiation studies, so quite naturally they were first studied in models of short- and long-term memory (e.g., delayed match to sample, maze performance). In general, these agents were procognitive. However, more recent work with different chemical classes has suggested additional therapeutic effects in models of schizophrenia (e.g., amphetamine locomotor activity), depression (e.g., forced swim test), neuroprotection (e.g., NMDA agonist lesions) and Parkinson’s disease (e.g., 6-hydroxydopamine lesion).ConclusionsIn conclusion, positive modulation of AMPA may offer numerous therapeutic avenues for central nervous system drug discovery.


Neuropharmacology | 1999

On the effect of neonatal nitric oxide synthase inhibition in rats: a potential neurodevelopmental model of schizophrenia.

Mark D. Black; David E. Selk; Janice M Hitchcock; Joseph G. Wettstein; Stephen M. Sorensen

NADPH-d (nicotinamide-adenine dinucleotide phosphate-diaphorase) neurons are thought to migrate improperly during development in the brains of schizophrenic patients. This enzyme is a nitric oxide synthase (NOS). Nitric oxide (NO) is known to affect neurodevelopmental processes in the CNS. Therefore, we hypothesized that interference of NO generation during development may produce some aspects of schizophrenia symptomatology in a rat model. In these experiments, neonatal rats were challenged with a NOS inhibitor (L-nitroarginine 1-100 mg/kg s.c.) daily on post-natal days 3-5. L-Nitroarginine (L-NoArg) treated male rats developed a hypersensitivity to amphetamine in adulthood versus vehicle treated controls, whereas female rats did not. However, L-NoArg treated female rats developed a hypersensitivity to phencyclidine (PCP) at juvenile and adult ages versus vehicle treated controls, whereas male animals did not. L-NoArg treated male rats also had deficits in pre-pulse inhibition of startle whereas adult female rats did not. The results are discussed in terms of a new neurodevelopmental model of schizophrenia and male/female differences inherent in this disease.


Neuropsychopharmacology | 2009

Pro-Cognitive and Antipsychotic Efficacy of the α 7 Nicotinic Partial Agonist SSR180711 in Pharmacological and Neurodevelopmental Latent Inhibition Models of Schizophrenia

Segev Barak; Michal Arad; Amaya De Levie; Mark D. Black; Guy Griebel; Ina Weiner

Schizophrenia symptoms can be segregated into positive, negative and cognitive, which exhibit differential sensitivity to drug treatments. Accumulating evidence points to efficacy of α7 nicotinic receptor (nAChR) agonists for cognitive deficits in schizophrenia but their activity against positive symptoms is thought to be minimal. The present study examined potential pro-cognitive and antipsychotic activity of the novel selective α7 nAChR partial agonist SSR180711 using the latent inhibition (LI) model. LI is the reduced efficacy of a previously non-reinforced stimulus to gain behavioral control when paired with reinforcement, compared with a novel stimulus. Here, no-drug controls displayed LI if non-reinforced pre-exposure to a tone was followed by weak but not strong conditioning (2 vs 5 tone-shock pairings). MK801 (0.05 mg/kg, i.p.) -treated rats as well as rats neonatally treated with nitric oxide synthase inhibitor L-NoArg (10 mg/kg, s.c.) on postnatal days 4–5, persisted in displaying LI with strong conditioning, whereas amphetamine (1 mg/kg) -treated rats failed to show LI with weak conditioning. SSR180711 (0.3, 1, 3 mg/kg, i.p.) was able to alleviate abnormally persistent LI produced by acute MK801 and neonatal L-NoArg; these models are believed to model cognitive aspects of schizophrenia and activity here was consistent with previous findings with α7-nAChR agonists. In addition, unexpectedly, SSR180711 (1, 3 mg/kg, i.p.) potentiated LI with strong conditioning in no-drug controls and reversed amphetamine-induced LI disruption, two effects considered predictive of activity against positive symptoms of schizophrenia. These findings suggest that SSR180711 may be beneficial not only for the treatment of cognitive symptoms in schizophrenia, as reported multiple times previously, but also positive symptoms.


Drug Development Research | 1998

Neonatal hippocampal lesion model of schizophrenia in rats: Sex differences and persistence of effects into maturity

Mark D. Black; Sarah Lister; Janice M. Hitchcock; Paul L.M. van Giersbergen; Stephen M. Sorensen

A neurodevelopmental model of schizophrenia in rats has recently been proposed employing neonatal hippocampal lesions. The present study further characterizes this model by investigating the long‐term effects of neonatal hippocampal lesions up to 100 days after birth, in male rats as well as female rats. Lesions were performed on postnatal day seven (PD 7).


Pharmacology, Biochemistry and Behavior | 2012

SAR110894, a potent histamine H3-receptor antagonist, displays procognitive effects in rodents

Guy Griebel; Philippe Pichat; Marie-Pierre Pruniaux; Sandra Beeské; Mati Lopez-Grancha; Elisabeth Genet; Jean-Paul Terranova; Antonio Castro; Juan Antonio Sánchez; Mark D. Black; Geoffrey B. Varty; Ina Weiner; Michal Arad; Segev Barak; Amaya De Levie; Etienne Guillot

SAR110894 is a novel histamine H₃-R ligand, displaying high and selective affinity for human, rat or mouse H₃-Rs. SAR110894 is a potent H₃-R antagonist at native receptors, reversing R-α-methylhistamine-induced inhibition of electrical field stimulation contraction in the guinea-pig ileum. Additionally, SAR110894 inhibited constitutive GTPγS binding at human H₃-Rs demonstrating inverse agonist properties. In behavioral models addressing certain aspects of cognitive impairment associated with schizophrenia (CIAS) and attention deficit/hyperactivity disorder (ADHD), SAR110894 improved memory performances in several variants of the object recognition task in mice (0.3-3 mg/kg, p.o.) or rats (0.3-1 mg/kg, p.o.). Moreover, SAR110894 (1 mg/kg, p.o.) reversed a deficit in working memory in the Y-maze test, following an acute low dose of phencyclidine (PCP) (0.5 mg/kg, i.p.) in mice sensitized by repeated treatment with a high dose of PCP (10 mg/kg, i.p.). In the latent inhibition (LI) model, SAR110894 potentiated LI in saline-treated rats (1 and 3 mg/kg, i.p.) and reversed abnormally persistent LI induced by neonatal nitric oxide synthase (NOS) inhibition in rodents (0.3-3 mg/kg, i.p.). In a social novelty discrimination task in rats, SAR110894 attenuated selective attention deficit induced by neonatal PCP treatment (3 and 10 mg/kg, p.o.) or a parametric modification of the procedure (3 and 10 mg/kg, p.o.). SAR110894 showed efficacy in several animal models related to the cognitive deficits in Alzheimers disease (AD). It prevented the occurrence of episodic memory deficit induced by scopolamine in rats (0.01-10 mg/kg, p.o.) or by the central infusion of the toxic amyloid fragment β₂₅₋₃₅ in the object recognition test in mice (1 and 3 mg/kg, p.o.). Altogether, these findings suggest that SAR110894 may be of therapeutic interest for the treatment of the cognitive symptoms of AD, schizophrenia and certain aspects of ADHD.


Neuropharmacology | 2002

Neonatal nitric oxide synthase inhibition: social interaction deficits in adulthood and reversal by antipsychotic drugs

Mark D. Black; J. Simmonds; Y. Senyah; J.G. Wettstein

Nitric oxide synthase (NOS) is thought to migrate improperly during development in the brains of schizophrenic patients. Also it is known that nitric oxide (NO) effects synaptogenesis during development of the CNS. Previously we have shown that neonatal treatment with a NOS inhibitor effects an animals sensitivity to amphetamine and PCP. In the present study, neonatal rats were challenged with a NOS inhibitor (L-nitroarginine, 10mg/kg, s.c.) daily on post-natal days (PD) three, four and five. L-Nitroarginine (L-NoArg) treated male rats at adulthood (PD56 and older) had a deficit in social interaction (SI) when placed in an environment with another foreign male rat and this deficit was reproducible on a weekly basis for at least five weeks. Haloperidol failed to significantly reverse this deficit before pronounced secondary effects on general behavior were seen at high doses. However, the atypical antipsychotics, clozapine and olanzapine, were able to significantly reverse this deficit at doses which did not effect baseline SI values. In a separate cohort of animals the effect of DOI was investigated, this was done to ascertain if there was a differential sensitivity of serotonergic pathways in this model. There was no difference in the behavioral score elicited from control or NoArg-treated rats. It is suggested that the SI deficits seen here may be more sensitive to atypical antipsychotics rather than haloperidol.


European Journal of Pharmacology | 2000

Effect of AMPA receptor modulators on hippocampal and cortical function

Mark D. Black; Jill Wotanis; Donald E. Schilp; Susan E. Hanak; Stephen M. Sorensen; Joseph Wettstein

Attention has focused on drugs that modulate AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid) receptors because of their potential for enhancing memory and treating certain pathologies that involve glutamatergic neurotransmission. The aim of this study was to compare and contrast the functionality of positive allosteric modulators of AMPA receptors in the hippocampus and medial prefrontal cortex. Electrically stimulated EPSPs (excitatory postsynaptic potential) in the hippocampus were augmented by CX516 [(1-quinoxaline-6-ylcarbonyl)piperidine], aniracetam and 1-BCP [(1-(1,3-benzodioxol-5-ylcarbonyl)piperidine] and not by cyclothiazide. Using grease gap electrophysiology, it was found that the mode of application dramatically altered the effect of the modulators of AMPA-induced depolarization. When added simultaneously with AMPA, aniracetam, 1-BCP and CX516 augmented the response in the frontal cortex. However, in the hippocampus, only aniracetam and cyclothiazide augmented the response when simultaneously added to AMPA. Therefore, in addition to regional variations, there appears to be differences in modulator response dependent upon whether a response is generated endogenously or exogenously by AMPA.


Schizophrenia Research | 2003

Comparative analysis of acute and chronic administration of haloperidol and clozapine using [3H] 2-deoxyglucose metabolic mapping.

Jill Wotanis; Susan E. Hanak; Joseph Wettstein; Mark D. Black

In an effort to compare and contrast the mechanisms of action of typical and atypical antipsychotic drugs, [3H] 2-deoxyglucose metabolic mapping was employed following acute and chronic administration of haloperidol (1 mg/kg i.p. acute and 0.5 mg/kg i.p. chronic) and clozapine (20 mg/kg i.p., both acute and chronic). Optical density ratios (ODR) were measured in 62 brain structures. An overall decrease in ODR was observed in many of the regions analyzed. Acute haloperidol elicited significant decreases, particularly in the thalamus and hippocampus. Acute clozapine decreased glucose uptake in the caudate putamen, hippocampus, central gray, locus coreleus, and the thalamus. In both chronically treated haloperidol and clozapine animals, significant decreases in ODR were seen in the thalamus and hippocampal areas most dramatically, with other changes in the superior colliculus, retrospenial cortex, and the cerebellum. Clozapine caused significant effects in 32 nuclei acutely and only 19 nuclei chronically. Haloperidol caused significant effects in 23 nuclei acutely and 15 nuclei chronically. The pattern of change induced by haloperidol and clozapine were remarkably similar when considering their pharmacology is somewhat different. Both antipsychotics elicited fewer significant changes upon chronic administration.


Scientific Reports | 2016

The mGluR2 positive allosteric modulator, SAR218645, improves memory and attention deficits in translational models of cognitive symptoms associated with schizophrenia

Guy Griebel; Philippe Pichat; Denis Boulay; Vanessa Naimoli; Lisa Potestio; Robert E. Featherstone; Sukhveen Sahni; Henry Defex; Christophe Desvignes; Franck Slowinski; Xavier Vigé; Olivier Bergis; Rosy Sher; Raymond W. Kosley; Sathapana Kongsamut; Mark D. Black; Geoffrey B. Varty

Normalization of altered glutamate neurotransmission through activation of the mGluR2 has emerged as a new approach to treat schizophrenia. These studies describe a potent brain penetrant mGluR2 positive allosteric modulator (PAM), SAR218645. The compound behaves as a selective PAM of mGluR2 in recombinant and native receptor expression systems, increasing the affinity of glutamate at mGluR2 as inferred by competition and GTPγ35S binding assays. SAR218645 augmented the mGluR2-mediated response to glutamate in a rat recombinant mGluR2 forced-coupled Ca2+ mobilization assay. SAR218645 potentiated mGluR2 agonist-induced contralateral turning. When SAR218645 was tested in models of the positive symptoms of schizophrenia, it reduced head twitch behavior induced by DOI, but it failed to inhibit conditioned avoidance and hyperactivity using pharmacological and transgenic models. Results from experiments in models of the cognitive symptoms associated with schizophrenia showed that SAR218645 improved MK-801-induced episodic memory deficits in rats and attenuated working memory impairment in NMDA Nr1neo−/− mice. The drug reversed disrupted latent inhibition and auditory-evoked potential in mice and rats, respectively, two endophenotypes of schizophrenia. This profile positions SAR218645 as a promising candidate for the treatment of cognitive symptoms of patients with schizophrenia, in particular those with abnormal attention and sensory gating abilities.


MedChemComm | 2011

Structure-based design, synthesis, and profiling of potent and selective neuronal nitric oxide synthase (nNOS) inhibitors with an amidinothiophene hydroxypiperidine scaffold

Guyan Liang; Kent W. Neuenschwander; Xin Chen; Linli Wei; Randall Munson; Anthony C. Scotese; Gregory Michael Shutske; Mark D. Black; Sharkir Sarhan; Jason Jiang; Isabelle Morize; Roy J. Vaz

A novel series of nNOS inhibitors with an amidinothiophene-hydroxypiperidine scaffold was designed based on X-ray structures and in-silico models. Three classes of inhibitors with this scaffold were synthesized and tested for their nNOS activity and eNOS selectivity. Compounds with a linear aliphatic amine linker demonstrated a superior property over those with a sulfonamide or an amide-like linker.

Collaboration


Dive into the Mark D. Black's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy Griebel

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge