Mark D. Davis
Centers for Disease Control and Prevention
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark D. Davis.
Environmental Health Perspectives | 2004
Beth C. Gladen; Mark A. Klebanoff; Mary L. Hediger; Solomon H. Katz; Dana B. Barr; Mark D. Davis; Matthew P. Longnecker
DDT (dichlorodiphenyltrichloroethane), a pesticide once used widely in agriculture and now limited to public health use, remains a controversial chemical because of a combination of benefits and risks. DDT or its breakdown products are ubiquitous in the environment and in humans. Compounds in the DDT family have endocrine actions and have been associated with reproductive toxicity. A previous study reported associations between prenatal exposure to p,p′-DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene] and increased height and weight in adolescent boys. We examined a group with higher exposures to see whether similar associations would occur. Our study group was 304 males born in Philadelphia in the early 1960s who had participated in a previous study. Anthropometric and pubertal measures from one to six visits during their adolescent years were available, as were stored maternal serum samples from pregnancy. We measured p,p′-DDE, p,p′-DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)-ethane], and o,p′-DDT [1,1,1-trichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)-ethane] in the maternal serum. Outcomes examined in the boys were height, ratio of sitting height to height, body mass index, triceps skinfold thickness, ratio of subscapular to the sum of triceps and subscapular skinfold thicknesses, skeletal age, serum testosterone, and serum dehydroepiandrosterone sulfate. No associations between prenatal exposure to any of the DDT compounds and any outcome measure were seen.
Cancer Epidemiology, Biomarkers & Prevention | 2008
Mary L. Biggs; Mark D. Davis; David L. Eaton; Noel S. Weiss; Dana B. Barr; David R. Doody; Sherianne Fish; Larry L. Needham; Chu Chen; Stephen M. Schwartz
Testicular germ cell carcinoma (TGCC) is the most common malignancy among men ages 20 to 34 years. Although the pathogenesis of TGCC is poorly understood, suboptimal androgen levels or impaired androgen signaling may play a role. Some persistent organochlorine pesticides commonly found in human tissue possess antiandrogenic properties. We examined whether the risk of TGCC is associated with serum levels of 11 organochlorine pesticides, including p,p′-DDE, and whether the p,p′-DDE-TGCC association is modified by CAG or GGN repeat polymorphisms in the androgen receptor gene. We conducted a population-based case-control study among 18- to 44-year-old male residents of three Washington State counties. Cases (n = 246) were diagnosed during 1999 to 2003 with a first, primary TGCC. Controls (n = 630) were men of similar age with no history of TGCC from the same population identified through random-digit telephone dialing. Questionnaires elicited information on demographic, medical, and lifestyle factors. A blood specimen provided serum for gas chromatography-high-resolution mass spectrometry analysis of organochlorine pesticide residues and DNA for genotyping. We observed no clear patterns between TGCC risk and concentrations of any of the organochlorines measured, nor did we observe that the risk associated with p,p′-DDE was modified by androgen receptor CAG (<23 versus ≥23 repeats) or GGN (<17 versus ≥17 repeats) genotype. This study does not provide support for the hypothesis that adult exposure to organochlorine pesticides is associated with risk of TGCC. Due to uncertainty regarding how well organochlorine levels measured in adulthood reflect exposures during early life, further research is needed using exposure measurements collected in utero or during infancy. (Cancer Epidemiol Biomarkers Prev 2008;17(8):2012–8)
Environmental Science & Technology | 2014
Kelly J. Trunnelle; Deborah H. Bennett; Nicolle S. Tulve; Matthew Scott Clifton; Mark D. Davis; Antonia M. Calafat; Rebecca E. Moran; Daniel J. Tancredi; Irva Hertz-Picciotto
Since the 2001 U.S. federally mandated phase-out of residential uses of organophosphates (OPs), use of and potential for human exposure to pyrethroids in the indoor residential environment has increased. We report concentrations of common pyrethroids, pyrethroid metabolites, and chlorpyrifos in floor wipes, and urinary concentrations of pyrethroid metabolites and 3,5,6-trichloro-2-pyridinol (TCPy) in samples collected in 2007-2009 from 90 northern California families as part of the Study of Use of Products and Exposure Related Behavior (SUPERB). Correlation and regression analyses examined associations between floor wipe and urine sample concentrations. The most frequently detected urinary metabolites were TCPy (64.7%, median concentration of 1.47 ng/mL) and 3-phenoxybenzoic acid (3PBA) (62.4%, 0.79 ng/mL). Compared to the National Health and Nutrition Examination Survey (NHANES) 2001-2002 general U.S. population, this population had substantially higher pyrethroid metabolite and lower TCPy urinary concentrations. This may be related to the increased residential use of pyrethroids after the phase-out of OPs. Chlorpyrifos (98.7%), cis- and trans-permethrin (97.5%), bifenthrin (59.3%), and 3PBA (98.7%) were frequently detected in the floor wipes. Floor wipe concentrations for pyrethroid insecticides were found to be significant predictors of child creatinine-adjusted urinary metabolite concentrations (log-log regression coefficients ranging from 0.26 to 0.29; p < 0.05) suggesting that indoor residential exposure to pyrethroid insecticides is an important exposure route for children.
Environmental Health Perspectives | 2013
Wendy McKelvey; J. Bryan Jacobson; Daniel Kass; Dana Boyd Barr; Mark D. Davis; Antonia M. Calafat; Kenneth M. Aldous
Background: Organophosphates and pyrethroids are the most common classes of insecticides used in the United States. Widespread use of these compounds to control building infestations in New York City (NYC) may have caused higher exposure than in less-urban settings. Objectives: The objectives of our study were to estimate pesticide exposure reference values for NYC and identify demographic and behavioral characteristics that predict exposures. Methods: The NYC Health and Nutrition Examination Survey was a population-based, cross-sectional study conducted in 2004 among adults ≥ 20 years of age. It measured urinary concentrations of organophosphate metabolites [dimethylphosphate (DMP), dimethylthiophosphate (DMTP), dimethyldithiophosphate, diethylphosphate, diethylthiophosphate, and diethyldithiophosphate] in 883 participants, and pyrethroid metabolites [3-phenoxybenzoic acid (3-PBA), trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (trans-DCCA), 4-fluoro-3-phenoxybenzoic acid, and cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid] in 1,452 participants. We used multivariable linear regression to estimate least-squares geometric mean total dialkylphospate (ΣDAP) and 3-PBA concentrations across categories of predictors. Results: The dimethyl organophosphate metabolites had the highest 95th percentile concentrations (87.4 μg/L and 74.7 μg/L for DMP and DMTP, respectively). The highest 95th percentiles among pyrethroid metabolites were measured for 3-PBA and trans-DCCA (5.23 μg/L and 5.94 μg/L, respectively). Concentrations of ΣDAP increased with increasing age, non-Hispanic white or black compared with Hispanic race/ethnicity, professional pesticide use, and increasing frequency of fruit consumption; they decreased with non-green vegetable consumption. Absolute differences in geometric mean urinary 3-PBA concentrations across categories of predictors were too small to be meaningful. Conclusion: Estimates of exposure to pyrethroids and dimethyl organophosphates were higher in NYC than in the United States overall, underscoring the importance of considering pest and pesticide burdens in cities when formulating pesticide use regulations. Citation: McKelvey W, Jacobson JB, Kass D, Barr DB, Davis M, Calafat AM, Aldous KM. 2013. Population-based biomonitoring of exposure to organophosphate and pyrethroid pesticides in New York City. Environ Health Perspect 121:1349–1356; http://dx.doi.org/10.1289/ehp.1206015
Journal of Chromatography B | 2013
Mark D. Davis; Erin L. Wade; Paula Restrepo; William Roman-Esteva; Roberto Bravo; Peter Kuklenyik; Antonia M. Calafat
Organophosphate and pyrethroid insecticides and phenoxyacetic acid herbicides represent important classes of pesticides applied in commercial and residential settings. Interest in assessing the extent of human exposure to these pesticides exists because of their widespread use and their potential adverse health effects. An analytical method for measuring 12 biomarkers of several of these pesticides in urine has been developed. The target analytes were extracted from one milliliter of urine by a semi-automated solid phase extraction technique, separated from each other and from other urinary biomolecules by reversed-phase high performance liquid chromatography, and detected using tandem mass spectrometry with isotope dilution quantitation. This method can be used to measure all the target analytes in one injection with similar repeatability and detection limits of previous methods which required more than one injection. Each step of the procedure was optimized to produce a robust, reproducible, accurate, precise and efficient method. The required selectivity and sensitivity for trace-level analysis (e.g., limits of detection below 0.5ng/mL) was achieved using a narrow diameter analytical column, higher than unit mass resolution for certain analytes, and stable isotope labeled internal standards. The method was applied to the analysis of 55 samples collected from adult anonymous donors with no known exposure to the target pesticides. This efficient and cost-effective method is adequate to handle the large number of samples required for national biomonitoring surveys.
Environmental Health | 2014
Ryan C. Lewis; David E. Cantonwine; Liza V. Anzalota Del Toro; Antonia M. Calafat; Liza Valentin-Blasini; Mark D. Davis; Samuel E. Baker; Akram N. Alshawabkeh; José F. Cordero; John D. Meeker
BackgroundThere are potential adverse health risks to the mother and fetus from exposure to pesticides. Thus, studies of exposure to pesticides among pregnant women are of interest as they will assist with understanding the potential burden of exposure globally, identifying sources of exposure, and designing epidemiology studies.MethodsWe measured urinary concentrations of the insect repellent N-N-diethyl-meta-toluamide (DEET) and two of its metabolites [3-diethyl-carbamoyl benzoic acid (DCBA) and N,N-diethyl-3-hydroxymethylbenzamide (DHMB)], four pyrethroid insecticide metabolites [4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA); 3-phenoxybenzoic acid (3-PBA); trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (trans-DCCA); and cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-DBCA)], and two chlorophenoxy herbicides [2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)] in 54 pregnant women from Puerto Rico at three separate time points (20 ± 2 weeks, 24 ± 2 weeks, and 28 ± 2 weeks of gestation). We calculated the distributions of the biomarker concentrations and compared them to those of women of reproductive age from the general U.S. population where available, and estimated the within-subject temporal variability of these repeated measurements. We also collected questionnaire data on demographics, consumption of select fruits, vegetables, and legumes in the past 48-hr, and pest-related issues, and associations between these variables and biomarker concentrations were examined.ResultsWe found that 95th percentile urinary concentrations of DEET, 3-PBA, trans-DCCA, and 2,4-D were lower than women of reproductive age on the U.S. mainland, whereas 95th percentile urinary concentrations of 4-F-3-PBA, cis-DBCA, and 2,4,5-T were similar. DCBA, the only urinary biomarker detected in >50% of the samples, showed fair to good reproducibility across pregnancy (intraclass correlation coefficient: 0.60). Women were more likely (p <0.05) to have greater urinary concentrations of pesticide biomarkers if they were less educated (DCBA and trans-DCCA), unemployed (DHMB), or married (2,4-D), had consumed collards or spinach in past 48-hr (2,4-D) or had been using insect repellent since becoming pregnant (DCBA), or were involved with residential applications of pesticides (trans-DCCA).ConclusionsWe identified concentrations and predictors of several pesticides among pregnant women in Puerto Rico. Further research is needed to understand what aspects of the predictors identified lead to greater exposure, and whether exposure during pregnancy is associated with adverse health.
Science of The Total Environment | 2015
Ryan C. Lewis; David E. Cantonwine; Liza V. Anzalota Del Toro; Antonia M. Calafat; Liza Valentin-Blasini; Mark D. Davis; M. Angela Montesano; Akram N. Alshawabkeh; José F. Cordero; John D. Meeker
Globally, human exposures to organophosphate (OP) insecticides may pose a significant burden to the health of mothers and their developing fetuses. Unfortunately, relevant data is limited in certain areas of the world concerning sources of exposure to OP insecticides in pregnant populations. To begin to address this gap in information for Puerto Rico, we studied repeated measures of urinary concentrations of 10 OP insecticide metabolites among 54 pregnant women from the northern karst region of the island. We also collected demographic data and self-reported information on the consumption of fruits, vegetables, and legumes in the past 48 h before urine collection and home pest-related issues. We calculated the distributions of the urinary biomarkers and compared them to women of reproductive age from the general U.S. population. We also used statistical models accounting for correlated data to assess within-subject temporal variability of the urinary biomarkers and to identify predictors of exposure. We found that for all but two metabolites (para-nitrophenol [PNP], diethylthiophosphate [DETP]), 50th or 95th percentile urinary concentrations (the metric that was used for comparison was based on the biomarkers detection frequency) of the other eight metabolites (3,5,6-trichloro-2-pyridinol [TCPY], 2-isopropyl-4-methyl-6-hydroxy-pyrimidine, malathion dicarboxylic acid, diethylphosphate, diethyldithiophosphate, dimethylphosphate, dimethylthiophosphate [DMTP], dimethyldithiophosphate) were somewhat lower in our cohort compared with similarly aged women from the continental United States. TCPY, PNP, DETP, and DMTP, which were the only urinary metabolites detected in greater than 50% of the samples, had poor reproducibility (intraclass correlation coefficient range: 0.19-0.28) during pregnancy. Positive predictors of OP insecticide exposure included: age; marital or employment status; consumption of cherries, grape juice, peanuts, peanut butter, or raisins; and residential application of pesticides. Further research is needed to understand what aspects of the predictors identified influence OP insecticide exposure during pregnancy.
Journal of Environmental and Public Health | 2010
Rosana H. Weldon; Monique Webster; Kim G. Harley; Asa Bradman; Laura Fenster; Mark D. Davis; Alan Hubbard; Dana B. Barr; Nina Holland; Brenda Eskenazi
Background. Research suggests that estrogenic endocrine-disrupting chemicals interfere with lactation. Objectives. (1) to determine if estrogenic persistent organic pollutants (POPs) are associated with shortened lactation duration; (2) to determine whether previous breastfeeding history biases associations. Methods and Results. We measured selected organochlorines and polychlorinated biphenyls (p, p′-DDE, p, p′-DDT, o, p′-DDT, β-hexachlorocyclohexane, hexachlorobenzene, and PCBs 44, 49, 52, 118, 138, 153, and 180) in serum from 366 low-income, Mexican-American pregnant women living in an agricultural region of California and assessed breastfeeding duration by questionnaires. We found no association between DDE, DDT, or estrogenic POPs with shortened lactation duration, but rather associations for two potentially estrogenic POPs with lengthened lactation duration arose (HR [95% CI]: 0.6 [0.4, 0.8] for p, p′-DDE & 0.8 [0.6, 1.0] for PCB 52). Associations between antiestrogenic POPs (PCBs 138 and 180) and shortened lactation duration were attributed to a lactation history bias. Conclusion. Estrogenic POPs were not associated with shortened lactation duration, but may be associated with longer lactation duration.
Journal of Pharmaceutical and Biomedical Analysis | 2010
M. Angela Montesano; Ralph D. Whitehead; Nayana K. Jayatilaka; Peter Kuklenyik; Mark D. Davis; Larry L. Needham; Dana B. Barr
Ethyl methanesulfonate (EMS) is a mesylate ester, which is known to be a potent mutagen, teratogen, and possibly carcinogen. Mesylate esters have been found in pharmaceuticals as contaminants formed during the manufacturing process and may potentially pose an exposure hazard to humans. We have developed and validated a method for detection of trace amounts (ng/ml levels) of EMS in human plasma and breast milk. The samples were extracted by matrix solid-phase dispersion with ethyl acetate using Hydromatrix and the ASE 200 Accelerated Solvent Extractor. The extracts were separated by high-performance liquid chromatography (HPLC) using a HILIC column. The detection was performed with a triple quadrupole mass spectrometer (TSQ Quantum Ultra, Thermo Electron Corporation) using atmospheric pressure chemical ionization in negative-ion mode and multiple reaction monitoring. The use of a surrogate internal standard in combination with HPLC-MS/MS provided a high degree of accuracy and precision. The extraction efficiency was greater than 70%. Repeated analyses of plasma and breast milk samples spiked with high (100 ng/ml), medium (50 ng/ml) and low (5 ng/ml) concentrations of the analytes gave relative standard deviations of less than 12%. The limits of detection were in the range of 0.5-0.9 ng/ml for both matrices.
Chemosphere | 2004
Koichi Saito; Andreas Sjödin; Courtney D. Sandau; Mark D. Davis; Hiroyuki Nakazawa; Yasuhiko Matsuki; Donald G. Patterson