Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark D. Erion is active.

Publication


Featured researches published by Mark D. Erion.


Biopolymers | 2012

Optimization of co‐agonism at GLP‐1 and glucagon receptors to safely maximize weight reduction in DIO‐rodents

Jonathan Day; Vasily Gelfanov; David L. Smiley; Paul E. Carrington; George J. Eiermann; Gary G. Chicchi; Mark D. Erion; Jas Gidda; Nancy A. Thornberry; Matthias H. Tschöp; Donald J. Marsh; Ranabir SinhaRoy; Richard D. DiMarchi; Alessandro Pocai

The ratio of GLP‐1/glucagon receptor (GLP1R/GCGR) co‐agonism that achieves maximal weight loss without evidence of hyperglycemia was determined in diet‐induced obese (DIO) mice chronically treated with GLP1R/GCGR co‐agonist peptides differing in their relative receptor agonism. Using glucagon‐based peptides, a spectrum of receptor selectivity was achieved by a combination of selective incorporation of GLP‐1 sequences, C‐terminal modification, backbone lactam stapling to stabilize helical structure, and unnatural amino acid substitutions at the N‐terminal dipeptide. In addition to α‐amino‐isobutyric acid (Aib) substitution at position two, we show that α,α′‐dimethyl imidazole acetic acid (Dmia) can serve as a potent replacement for the highly conserved histidine at position one. Selective site‐specific pegylation was used to further minimize enzymatic degradation and provide uniform, extended in vivo duration of action. Maximal weight loss devoid of any sign of hyperglycemia was achieved with a co‐agonist comparably balanced for in vitro potency at murine GLP1R and GCGR. This peptide exhibited superior weight loss and glucose lowering compared to a structurally matched pure GLP1R agonist, and to co‐agonists of relatively reduced GCGR tone. Any further enhancement of the relative GCGR agonist potency yielded increased weight loss but at the expense of elevated blood glucose. We conclude that GCGR agonism concomitant with GLP1R agonism constitutes a promising approach to treatment of the metabolic syndrome. However, the relative ratio of GLP1R/GCGR co‐agonism needs to be carefully chosen for each species to maximize weight loss efficacy and minimize hyperglycemia.


Science | 2017

Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy

Robert W. Myers; Hong-Ping Guan; Juliann Ehrhart; Aleksandr Petrov; Srinivasa Prahalada; Effie Tozzo; Xiaodong Yang; Marc M. Kurtz; Maria E. Trujillo; Dinko Gonzalez Trotter; Danqing Feng; Shiyao Xu; George J. Eiermann; Marie A. Holahan; Daniel Rubins; Stacey Conarello; Xiaoda Niu; Sandra C. Souza; Corin Miller; Jinqi Liu; Ku Lu; Wen Feng; Ying Li; Ronald E. Painter; James A. Milligan; Huaibing He; Franklin Liu; Aimie M. Ogawa; Douglas Wisniewski; Rory J. Rohm

Hitting a dozen enzymes with one drug The adenosine monophosphate-activated protein kinase (AMPK) controls cellular energy status. AMPK is activated when energy levels fall. This stimulates adenosine triphosphate (ATP)-generating pathways that promote glucose uptake and inhibits ATP-consuming pathways associated with glucose synthesis. In principle, these effects would be beneficial in metabolic diseases, including diabetes. Pharmacological activation of AMPK has been challenging, however, because in mammals, the enzyme exists as 12 distinct complexes. Myers et al. describe an orally available compound (MK-8722) that activates all 12 complexes (see the Perspective by Hardie). In animal models, MK-8722 ameliorated diabetes, but it also caused enlargement of the heart. MK-8722 may be a useful tool compound for laboratory research on AMPK function. Science, this issue p. 507; see also p. 455 In animals, a drug activating all 12 isoforms of the energy regulator AMPK benefits metabolism but may pose heart risks. 5′-Adenosine monophosphate–activated protein kinase (AMPK) is a master regulator of energy homeostasis in eukaryotes. Despite three decades of investigation, the biological roles of AMPK and its potential as a drug target remain incompletely understood, largely because of a lack of optimized pharmacological tools. We developed MK-8722, a potent, direct, allosteric activator of all 12 mammalian AMPK complexes. In rodents and rhesus monkeys, MK-8722–mediated AMPK activation in skeletal muscle induced robust, durable, insulin-independent glucose uptake and glycogen synthesis, with resultant improvements in glycemia and no evidence of hypoglycemia. These effects translated across species, including diabetic rhesus monkeys, but manifested with concomitant cardiac hypertrophy and increased cardiac glycogen without apparent functional sequelae.


Journal of Lipid Research | 2015

Glucagon receptor antagonism induces increased cholesterol absorption

Hong-Ping Guan; Xiaodong Yang; Ku Lu; Sheng-Ping Wang; Jose Castro-Perez; Stephen F. Previs; Michael Wright; Vinit Shah; Kithsiri Herath; Dan Xie; Daphne Szeto; Gail Forrest; Jing Chen Xiao; Oksana C. Palyha; Li-Ping Sun; Paula J. Andryuk; Samuel S. Engel; Yusheng Xiong; Songnian Lin; David E. Kelley; Mark D. Erion; Harry R. Davis; Liangsu Wang

Glucagon and insulin have opposing action in governing glucose homeostasis. In type 2 diabetes mellitus (T2DM), plasma glucagon is characteristically elevated, contributing to increased gluconeogenesis and hyperglycemia. Therefore, glucagon receptor (GCGR) antagonism has been proposed as a pharmacologic approach to treat T2DM. In support of this concept, a potent small-molecule GCGR antagonist (GRA), MK-0893, demonstrated dose-dependent efficacy to reduce hyperglycemia, with an HbA1c reduction of 1.5% at the 80 mg dose for 12 weeks in T2DM. However, GRA treatment was associated with dose-dependent elevation of plasma LDL-cholesterol (LDL-c). The current studies investigated the cause for increased LDL-c. We report findings that link MK-0893 with increased glucagon-like peptide 2 and cholesterol absorption. There was not, however, a GRA-related modulation of cholesterol synthesis. These findings were replicated using structurally diverse GRAs. To examine potential pharmacologic mitigation, coadministration of ezetimibe (a potent inhibitor of cholesterol absorption) in mice abrogated the GRA-associated increase of LDL-c. Although the molecular mechanism is unknown, our results provide a novel finding by which glucagon and, hence, GCGR antagonism govern cholesterol metabolism.


Handbook of experimental pharmacology | 2011

Fructose-1, 6-Bisphosphatase Inhibitors for Reducing Excessive Endogenous Glucose Production in Type 2 Diabetes

Paul D. van Poelje; Scott C. Potter; Mark D. Erion

Fructose-1,6-bisphosphatase (FBPase), a rate-controlling enzyme of gluconeogenesis, has emerged as an important target for the treatment of type 2 diabetes due to the well-recognized role of excessive endogenous glucose production (EGP) in the hyperglycemia characteristic of the disease. Inhibitors of FBPase are expected to fulfill an unmet medical need because the majority of current antidiabetic medications act primarily on insulin resistance or insulin insufficiency and do not reduce gluconeogenesis effectively or in a direct manner. Despite significant challenges, potent and selective inhibitors of FBPase targeting the allosteric site of the enzyme were identified by means of a structure-guided design strategy that used the natural inhibitor, adenosine monophosphate (AMP), as the starting point. Oral delivery of these anionic FBPase inhibitors was enabled by a novel diamide prodrug class. Treatment of diabetic rodents with CS-917, the best characterized of these prodrugs, resulted in a reduced rate of gluconeogenesis and EGP. Of note, inhibition of gluconeogenesis by CS-917 led to the amelioration of both fasting and postprandial hyperglycemia without weight gain, incidence of hypoglycemia, or major perturbation of lactate or lipid homeostasis. Furthermore, the combination of CS-917 with representatives of the insulin sensitizer or insulin secretagogue drug classes provided enhanced glycemic control. Subsequent clinical evaluations of CS-917 revealed a favorable safety profile as well as clinically meaningful reductions in fasting glucose levels in patients with T2DM. Future trials of MB07803, a second generation FBPase inhibitor with improved pharmacokinetics, will address whether this novel class of antidiabetic agents can provide safe and long-term glycemic control.


Antimicrobial Agents and Chemotherapy | 2011

Antiviral Efficacy upon Administration of a HepDirect Prodrug of 2′-C-Methylcytidine to Hepatitis C Virus-Infected Chimpanzees

Steven S. Carroll; Kenneth A. Koeplinger; Marissa Vavrek; Nanyan Rena Zhang; Laurence Handt; Malcolm MacCoss; David B. Olsen; K. Raja Reddy; Zhili Sun; Paul D. van Poelje; James M. Fujitaki; Serge H. Boyer; David L. Linemeyer; Scott J. Hecker; Mark D. Erion

ABSTRACT Hepatitis C virus (HCV) infects an estimated 170 million individuals worldwide, and the current standard of care, a combination of pegylated interferon alpha and ribavirin, is efficacious in achieving sustained viral response in ∼50% of treated patients. Novel therapies under investigation include the use of nucleoside analog inhibitors of the viral RNA-dependent RNA polymerase. NM283, a 3′-valyl ester prodrug of 2′-C-methylcytidine, has demonstrated antiviral efficacy in HCV-infected patients (N. Afdhal et al., J. Hepatol. 46[Suppl. 1]:S5, 2007; N. Afdhal et al., J. Hepatol. 44[Suppl. 2]:S19, 2006). One approach to increase the antiviral efficacy of 2′-C-methylcytidine is to increase the concentration of the active inhibitory species, the 5′-triphosphate, in infected hepatocytes. HepDirect prodrug technology can increase intracellular concentrations of a nucleoside triphosphate in hepatocytes by introducing the nucleoside monophosphate into the cell, bypassing the initial kinase step that is often rate limiting. Screening for 2′-C-methylcytidine triphosphate levels in rat liver after oral dosing identified 1-[3,5-difluorophenyl]-1,3-propandiol as an efficient prodrug modification. To determine antiviral efficacy in vivo, the prodrug was administered separately via oral and intravenous dosing to two HCV-infected chimpanzees. Circulating viral loads declined by ∼1.4 log10 IU/ml and by >3.6 log10 IU/ml after oral and intravenous dosing, respectively. The viral loads rebounded after the end of dosing to predose levels. The results indicate that a robust antiviral response can be achieved upon administration of the prodrug.


Journal of Biological Chemistry | 2016

Physiological Expression of AMPKγ2RG Mutation Causes Wolff-Parkinson-White Syndrome and Induces Kidney Injury in Mice

Xiaodong Yang; John S. Mudgett; Ghina Bouabout; Marie-France Champy; Hugues Jacobs; Laurent Monassier; Guillaume Pavlovic; Tania Sorg; Yann Herault; Benoit Petit-Demoulière; Ku Lu; Wen Feng; Hongwu Wang; Lijun Ma; Roger Askew; Mark D. Erion; David E. Kelley; Robert W. Myers; Cai Li; Hong-Ping Guan

Mutations of the AMP-activated kinase gamma 2 subunit (AMPKγ2), N488I (AMPKγ2NI) and R531G (AMPKγ2RG), are associated with Wolff-Parkinson-White (WPW) syndrome, a cardiac disorder characterized by ventricular pre-excitation in humans. Cardiac-specific transgenic overexpression of human AMPKγ2NI or AMPKγ2RG leads to constitutive AMPK activation and the WPW phenotype in mice. However, overexpression of these mutant proteins also caused profound, non-physiological increase in cardiac glycogen, which might abnormally alter the true phenotype. To investigate whether physiological levels of AMPKγ2NI or AMPKγ2RG mutation cause WPW syndrome and metabolic changes in other organs, we generated two knock-in mouse lines on the C57BL/6N background harboring mutations of human AMPKγ2NI and AMPKγ2RG, respectively. Similar to the reported phenotypes of mice overexpressing AMPKγ2NI or AMPKγ2RG in the heart, both lines developed WPW syndrome and cardiac hypertrophy; however, these effects were independent of cardiac glycogen accumulation. Compared with AMPKγ2WT mice, AMPKγ2NI and AMPKγ2RG mice exhibited reduced body weight, fat mass, and liver steatosis when fed with a high fat diet (HFD). Surprisingly, AMPKγ2RG but not AMPKγ2NI mice fed with an HFD exhibited severe kidney injury characterized by glycogen accumulation, inflammation, apoptosis, cyst formation, and impaired renal function. These results demonstrate that expression of AMPKγ2NI and AMPKγ2RG mutations at physiological levels can induce beneficial metabolic effects but that this is accompanied by WPW syndrome. Our data also reveal an unexpected effect of AMPKγ2RG in the kidney, linking lifelong constitutive activation of AMPK to a potential risk for kidney dysfunction in the context of an HFD.


American Journal of Physiology-endocrinology and Metabolism | 2016

Quantifying rates of glucose production in vivo following an intraperitoneal tracer bolus.

Sheng-Ping Wang; Dan Zhou; Zuliang Yao; Santhosh Satapati; Ying Chen; Natalie A. Daurio; Aleksandr Petrov; Xiaolan Shen; Daniel E. Metzger; Wu Yin; Andrea R. Nawrocki; George J. Eiermann; Joyce Hwa; Craig Fancourt; Corin O. Miller; Kithsiri Herath; Thomas P. Roddy; Deborah Slipetz; Mark D. Erion; Stephen F. Previs; David E. Kelley

Aberrant regulation of glucose production makes a critical contribution to the impaired glycemic control that is observed in type 2 diabetes. Although isotopic tracer methods have proven to be informative in quantifying the magnitude of such alterations, it is presumed that one must rely on venous access to administer glucose tracers which therein presents obstacles for the routine application of tracer methods in rodent models. Since intraperitoneal injections are readily used to deliver glucose challenges and/or dose potential therapeutics, we hypothesized that this route could also be used to administer a glucose tracer. The ability to then reliably estimate glucose flux would require attention toward setting a schedule for collecting samples and choosing a distribution volume. For example, glucose production can be calculated by multiplying the fractional turnover rate by the pool size. We have taken a step-wise approach to examine the potential of using an intraperitoneal tracer administration in rat and mouse models. First, we compared the kinetics of [U-13C]glucose following either an intravenous or an intraperitoneal injection. Second, we tested whether the intraperitoneal method could detect a pharmacological manipulation of glucose production. Finally, we contrasted a potential application of the intraperitoneal method against the glucose-insulin clamp. We conclude that it is possible to 1) quantify glucose production using an intraperitoneal injection of tracer and 2) derive a glucose production index by coupling estimates of basal glucose production with measurements of fasting insulin concentration; this yields a proxy for clamp-derived assessments of insulin sensitivity of endogenous production.


Journal of Lipid Research | 2017

GPR120 suppresses adipose tissue lipolysis and synergizes with GPR40 in antidiabetic efficacy

Santhosh Satapati; Ying Qian; Margaret Wu; Aleksandr Petrov; Ge Dai; Sheng-Ping Wang; Yonghua Zhu; Xiaolan Shen; Eric S. Muise; Ying Chen; Emanuel Zycband; Adam Weinglass; Jerry Di Salvo; John S. Debenham; Jason M. Cox; Ping Lan; Vinit Shah; Stephen F. Previs; Mark D. Erion; David E. Kelley; Liangsu Wang; Andrew D. Howard; Jin Shang

GPR40 and GPR120 are fatty acid sensors that play important roles in glucose and energy homeostasis. GPR40 potentiates glucose-dependent insulin secretion and demonstrated in clinical studies robust glucose lowering in type 2 diabetes. GPR120 improves insulin sensitivity in rodents, albeit its mechanism of action is not fully understood. Here, we postulated that the antidiabetic efficacy of GPR40 could be enhanced by coactivating GPR120. A combination of GPR40 and GPR120 agonists in db/db mice, as well as a single molecule with dual agonist activities, achieved superior glycemic control compared with either monotherapy. Compared with a GPR40 selective agonist, the dual agonist improved insulin sensitivity in ob/ob mice measured by hyperinsulinemic-euglycemic clamp, preserved islet morphology, and increased expression of several key lipolytic genes in adipose tissue of Zucker diabetic fatty rats. Novel insights into the mechanism of action for GPR120 were obtained. Selective GPR120 activation suppressed lipolysis in primary white adipocytes, although this effect was attenuated in adipocytes from obese rats and obese rhesus, and sensitized the antilipolytic effect of insulin in rat and rhesus primary adipocytes. In conclusion, GPR120 agonism enhances insulin action in adipose tissue and yields a synergistic efficacy when combined with GPR40 agonism.


Diabetes | 2017

Engineering Glucose Responsiveness Into Insulin

Niels C. Kaarsholm; Songnian Lin; Lin Yan; Theresa M. Kelly; Margaret van Heek; James Mu; Margaret Wu; Ge Dai; Yan Cui; Yonghua Zhu; Ester Carballo-Jane; Vijay Bhasker G. Reddy; Peter Zafian; Pei Huo; Shuai Shi; Valentyn Antochshuk; Aimie M. Ogawa; Franklin Liu; Sandra C. Souza; Wolfgang Seghezzi; Joseph L. Duffy; Mark D. Erion; Ravi P. Nargund; David E. Kelley

Insulin has a narrow therapeutic index, reflected in a small margin between a dose that achieves good glycemic control and one that causes hypoglycemia. Once injected, the clearance of exogenous insulin is invariant regardless of blood glucose, aggravating the potential to cause hypoglycemia. We sought to create a “smart” insulin, one that can alter insulin clearance and hence insulin action in response to blood glucose, mitigating risk for hypoglycemia. The approach added saccharide units to insulin to create insulin analogs with affinity for both the insulin receptor (IR) and mannose receptor C-type 1 (MR), which functions to clear endogenous mannosylated proteins, a principle used to endow insulin analogs with glucose responsivity. Iteration of these efforts culminated in the discovery of MK-2640, and its in vitro and in vivo preclinical properties are detailed in this report. In glucose clamp experiments conducted in healthy dogs, as plasma glucose was lowered stepwise from 280 mg/dL to 80 mg/dL, progressively more MK-2640 was cleared via MR, reducing by ∼30% its availability for binding to the IR. In dose escalations studies in diabetic minipigs, a higher therapeutic index for MK-2640 (threefold) was observed versus regular insulin (1.3-fold).


Diabetes | 2018

GPR119 Agonism Increases Glucagon Secretion During Insulin-Induced Hypoglycemia

Nina Xiaoyan Li; Stacey Brown; Tim Kowalski; Margaret Wu; Liming Yang; Ge Dai; Aleksandr Petrov; Yuyan Ding; Tamara Dlugos; Harold B. Wood; Liangsu Wang; Mark D. Erion; Robert S. Sherwin; David E. Kelley

Insulin-induced hypoglycemia in diabetes is associated with impaired glucagon secretion. In this study, we tested whether stimulation of GPR119, a G-protein–coupled receptor expressed in pancreatic islet as well as enteroendocrine cells and previously shown to stimulate insulin and incretin secretion, might enhance glucagon secretion during hypoglycemia. In the study, GPR119 agonists were applied to isolated islets or perfused pancreata to assess insulin and glucagon secretion during hypoglycemic or hyperglycemic conditions. Insulin infusion hypoglycemic clamps were performed with or without GPR119 agonist pretreatment to assess glucagon counterregulation in healthy and streptozotocin (STZ)-induced diabetic rats, including those exposed to recurrent bouts of insulin-induced hypoglycemia that leads to suppression of hypoglycemia-induced glucagon release. Hypoglycemic clamp studies were also conducted in GPR119 knockout (KO) mice to evaluate whether the pharmacological stimulatory actions of GPR119 agonists on glucagon secretion during hypoglycemia were an on-target effect. The results revealed that GPR119 agonist-treated pancreata or cultured islets had increased glucagon secretion during low glucose perfusion. In vivo, GPR119 agonists also significantly increased glucagon secretion during hypoglycemia in healthy and STZ-diabetic rats, a response that was absent in GPR119 KO mice. In addition, impaired glucagon counterregulatory responses were restored by a GPR119 agonist in STZ-diabetic rats that were exposed to antecedent bouts of hypoglycemia. Thus, GPR119 agonists have the ability to pharmacologically augment glucagon secretion, specifically in response to hypoglycemia in diabetic rodents. Whether this effect might serve to diminish the occurrence and severity of iatrogenic hypoglycemia during intensive insulin therapy in patients with diabetes remains to be established.

Collaboration


Dive into the Mark D. Erion's collaboration.

Researchain Logo
Decentralizing Knowledge