Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark D. Handschumacher is active.

Publication


Featured researches published by Mark D. Handschumacher.


Circulation | 1997

Insights From Three-Dimensional Echocardiography Into the Mechanism of Functional Mitral Regurgitation Direct In Vivo Demonstration of Altered Leaflet Tethering Geometry

Yutaka Otsuji; Mark D. Handschumacher; Ehud Schwammenthal; Leng Jiang; Jae-Kwan Song; J. Luis Guerrero; Gus J. Vlahakes; Robert A. Levine

BACKGROUND Recent advances in three-dimensional (3D) echocardiography allow us to address uniquely 3D scientific questions, such as the mechanism of functional mitral regurgitation (MR) in patients with left ventricular (LV) dysfunction and its relation to the 3D geometry of mitral leaflet attachments. Competing hypotheses include global LV dysfunction with inadequate leaflet closing force versus geometric distortion of the mitral apparatus by LV dilatation, which increases leaflet tethering and restricts closure. Because geometric changes generally accompany dysfunction, these possibilities have been difficult to separate. METHODS AND RESULTS We created a model of global LV dysfunction by esmolol and phenylephrine infusion in six dogs. initially with LV expansion limited by increasing pericardial restraint and then with the pericardium opened. The mid-systolic 3D relations of the papillary muscle (PM) tips and mitral valve were reconstructed. Despite severe LV dysfunction (ejection fraction, 18+/-6%), only trace MR developed when pericardial restraint limited LV dilatation; with the pericardium opened, moderate MR accompanied LV dilatation (end-systolic volume, 44+/-5 mL versus 12+/-5 mL control, P<.001). Mitral regurgitant volume and orifice area did not correlate with LV ejection fraction and dP/dt (global function) but did correlate with changes in the tethering distance from the PMs to the anterior annulus derived from the 3D reconstructions, especially PM shifts in the posterior and mediolateral directions, as well as with annular area (P<.0005). By multiple regression, only changes in the PM-to-annulus distance independently predicted MR volume and orifice area (R2=.82 to .85, P=2x10(-7) to 6x10(-8)). CONCLUSIONS LV dysfunction without dilatation fails to produce important MR. Functional MR relates strongly to changes in the 3D geometry of the mitral valve attachments at the PM and annular levels, with practical implications for approaches that would restore a more favorable configuration.


Circulation | 1989

Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse.

Robert A. Levine; Mark D. Handschumacher; Anthony J. Sanfilippo; Albert Hagège; Pamela Harrigan; Jane E. Marshall; Arthur E. Weyman

Mitral valve prolapse has been diagnosed by two-dimensional echocardiographic criteria with surprising frequency in the general population, even when preselected normal subjects are examined. In most of these individuals, however, prolapse appears in the apical four-chamber view and is absent in roughly orthogonal long-axis views. Previous studies of in vitro models with nonplanar rings have shown that systolic mitral annular nonplanarity can potentially produce this discrepancy. However, to prove directly that apparent leaflet displacement in a two-dimensional view does not constitute true displacement above the three-dimensional annulus requires reconstruction of the entire mitral valve, including leaflets and annulus. Such reconstruction would also be necessary to explore the complex geometry of the valve and to derive volumetric measures of superior leaflet displacement. A technique was therefore developed and validated in vitro for three-dimensional reconstruction of the entire mitral valve. In this technique, simultaneous real-time acquisition of images and their spatial locations permits reconstruction of a localized structure by minimizing the effects of patient motion and respiration. By applying this method to 15 normal subjects, a coherent mitral valve surface could be reconstructed from intersecting scans. The results confirm mitral annular nonplanarity in systole, with a maximum deviation of 1.4 +/- 0.3 cm from planarity. They directly show that leaflets can appear to ascend above the mitral annulus in the apical four-chamber view, as they did in at least one view in all subjects, without actual leaflet displacement above the entire mitral valve in three dimensions, thereby challenging the diagnosis of prolapse by isolated four-chamber view displacement in otherwise normal individuals. This technique allows us to address a uniquely three-dimensional problem with high resolution and provide new information previously unavailable from the two-dimensional images. This new appreciation should enhance our ability to ask appropriate clinical questions relating mitral valve shape and leaflet displacement to clinical and pathologic consequences.


Journal of the American College of Cardiology | 2001

Mechanism of ischemic mitral regurgitation with segmental left ventricular dysfunction: three-dimensional echocardiographic studies in models of acute and chronic progressive regurgitation

Yutaka Otsuji; Mark D. Handschumacher; Noah Liel-Cohen; Hiroaki Tanabe; Leng Jiang; Ehud Schwammenthal; J. Luis Guerrero; Lori Nicholls; Gus J. Vlahakes; Robert A. Levine

OBJECTIVES This study aimed to separate proposed mechanisms for segmental ischemic mitral regurgitation (MR), including left ventricular (LV) dysfunction versus geometric distortion by LV dilation, using models of acute and chronic segmental ischemic LV dysfunction evaluated by three-dimensional (3D) echocardiography. BACKGROUND Dysfunction and dilation-both mechanisms with practical therapeutic implications-are difficult to separate in patients. METHODS In seven dogs with acute left circumflex (LCX) coronary ligation, LV expansion was initially restricted and then permitted to occur. In seven sheep with LCX branch ligation, LV expansion was also initially limited but became prominent with remodeling over eight weeks. Three-dimensional echo reconstruction quantified mitral apparatus geometry and MR volume. RESULTS In the acute model, despite LV dysfunction with ejection fraction = 23 +/- 8%, MR was initially trace with limited LV dilation, but it became moderate with subsequent prominent dilation. In the chronic model, MR was also initially trace, but it became moderate over eight weeks as the LV dilated and changed shape. In both models, the only independent predictor of MR volume was increased tethering distance from the papillary muscles (PMs) to the anterior annulus, especially medial and posterior shift of the ischemic medial PM, measured by 3D reconstruction (r2 = 0.75 and 0.86, respectively). Mitral regurgitation volume did not correlate with LV ejection fraction or dP/dt. CONCLUSIONS Segmental ischemic LV contractile dysfunction without dilation, even in the PM territory, fails to produce important MR. The development of MR relates strongly to changes in the 3D geometry of the mitral apparatus, with implications for approaches to restore a more favorable configuration.


Circulation | 2000

Design of a New Surgical Approach for Ventricular Remodeling to Relieve Ischemic Mitral Regurgitation Insights From 3-Dimensional Echocardiography

Noah Liel-Cohen; J. Luis Guerrero; Yutaka Otsuji; Mark D. Handschumacher; Lawrence G. Rudski; Patrick R. Hunziker; Hiroaki Tanabe; Marielle Scherrer-Crosbie; Suzanne Sullivan; Robert A. Levine

BACKGROUND Mechanistic insights from 3D echocardiography (echo) can guide therapy. In particular, ischemic mitral regurgitation (MR) is difficult to repair, often persisting despite annular reduction. We hypothesized that (1) in a chronic infarct model of progressive MR, regurgitation parallels 3D changes in the geometry of mitral leaflet attachments, causing increased leaflet tethering and restricting closure; therefore, (2) MR can be reduced by restoring tethering geometry toward normal, using a new ventricular remodeling approach based on 3D echo findings. METHODS AND RESULTS We studied 10 sheep by 3D echo just after circumflex marginal ligation and 8 weeks later. MR, at first absent, became moderate as the left ventricle (LV) dilated and the papillary muscles shifted posteriorly and mediolaterally, increasing the leaflet tethering distance from papillary muscle tips to the anterior mitral annulus (P<0.0001). To counteract these shifts, the LV was remodeled by plication of the infarct region to reduce myocardial bulging, without muscle excision or cardiopulmonary bypass. Immediately and up to 2 months after plication, MR was reduced to trace-to-mild as tethering distance was decreased (P<0.0001). LV ejection fraction, global LV end-systolic volume, and mitral annular area were relatively unchanged. By multiple regression, the only independent predictor of MR was tethering distance (r(2)=0.81). CONCLUSIONS Ischemic MR in this model relates strongly to changes in 3D mitral leaflet attachment geometry. These insights from quantitative 3D echo allowed us to design an effective LV remodeling approach to reduce MR by relieving tethering.


Circulation | 2006

Geometric Determinants of Functional Tricuspid Regurgitation Insights From 3-Dimensional Echocardiography

Thanh Thao Ton-Nu; Robert A. Levine; Mark D. Handschumacher; David J. Dorer; Chaim Yosefy; Dali Fan; Lanqi Hua; Leng Jiang; Judy Hung

Background— Tricuspid regurgitation (TR) is an important predictor of morbidity and mortality in heart failure. We aimed to examine the 3D geometry of the tricuspid valve annulus (TVA) in patients with functional TR, comparing them with patients with normal tricuspid valve function and relating annular geometric changes to functional TR. Methods and Results— TVA shape was examined by real-time 3D echocardiography in 75 patients: 35 with functional TR and 40 with normal tricuspid valve function (referent group). The 3D shape of the TVA was reconstructed from rotated 2D planes, and the annular plane was computed by least-squares fitting. Annular area and mediolateral, anteroposterior, and high (superior)-low (inferior) distances were calculated. TR was assessed by vena contracta width. The normal TVA has a bimodal pattern (high-low distance=7.23±1.05 mm). High points were located anteroposteriorly, and low points were located mediolaterally. With moderate or greater TR (vena contracta width 5.80±2.62 mm), the TVA became dilated (17.24±4.75 versus 9.83±2.18 cm2, P<0.0001, TR versus referent), more planar with decreased high-low distance (4.14±1.05 mm), and more circular with decreased ratio of mediolateral/anteroposterior (1.11±0.09 versus 1.32±0.09, P<0.0001, TR versus referent). Conclusions— The normal TVA has a bimodal shape with distinct high points located anteroposteriorly and low points located mediolaterally. With functional TR, the annulus becomes larger, more planar, and circular. These changes in annular shape with TR have potentially important mechanistic and therapeutic implications for tricuspid valve repair.


ARQUIVOS BRASILEIROS DE CARDIOLOGIA - IMAGEM CARDIOVASCULAR | 2014

Guidelines for the Echocardiographic Assessment of the Right Heart in Adults: A Report from the American Society of Echocardiography

Lawrence G. Rudski; Wyman W. Lai; Jonathan Afilalo; Lanqi Hua; Mark D. Handschumacher; Krishnaswamy Chandrasekaran; Scott D. Solomon; Eric K. Louie; Nelson B. Schiller

on Statement: Society of Echocardiography is accredited by the Accreditation Council for edical Education to provide continuing medical education for physicians. n Society of Echocardiography designates this educational activity for of 1.0 AMA PRA Category 1 Credits . Physicians should only claim credit te with the extent of their participation in the activity. CCI recognize ASE’s certificates and have agreed to honor the credit hours registry requirements for sonographers. Society of Echocardiography is committed to ensuring that its educational ll sponsored educational programs are not influenced by the special interests ation or individual, and its mandate is to retain only those authors whose fists can be effectively resolved to maintain the goals andeducational integrity y. While a monetary or professional affiliation with a corporation does not fluence an author’s presentation, the Essential Areas and policies of the ire that any relationships that could possibly conflict with the educational activity be resolved prior to publication and disclosed to the audience. f faculty and commercial support relationships, if any, have been indicated. ience: is designed for all cardiovascular physicians and cardiac sonographers with erest and knowledge base in the field of echocardiography; in addition, reschers, clinicians, intensivists, and other medical professionals with a spein cardiac ultrasound will find this activity beneficial.


Circulation | 2002

Reverse Ventricular Remodeling Reduces Ischemic Mitral Regurgitation Echo-Guided Device Application in the Beating Heart

Judy Hung; J. Luis Guerrero; Mark D. Handschumacher; Gregory E. Supple; Suzanne Sullivan; Robert A. Levine

Background—In ischemic mitral regurgitation (MR), mitral leaflet closure is restricted by ventricular remodeling with displacement of the papillary muscles (PMs). Therapy is uncertain because ring annuloplasty does not alleviate PM displacement. We tested the hypothesis that echo-guided PM repositioning using an external device can reduce MR without compromising left ventricular (LV) function. Methods and Results—We studied 10 sheep with ischemic MR produced by circumflex ligation with inferior infarction, 6 acutely and 4 eight weeks after myocardial infarction (MI). A Dacron patch containing an inflatable balloon was placed over the PMs and adjusted under echo guidance to reverse LV remodeling and reposition the infarcted PM. 3D echo assessed mitral valve geometric changes. In 7 sheep, sonomicrometry and Millar catheters assessed changes in end-systolic and end-diastolic pressure-volume relationships, and microspheres were injected to assess coronary flow. Moderate MR after MI resolved with patch application alone (n=3) or echo-guided balloon inflation, which repositioned the infarcted PM, decreasing the PM tethering distance from 31.1±2.5 mm after MI to 26.8±1.8 with patch (P <0.01; baseline=25.5±1.5). LV contractility was unchanged (end-systolic slope=3.4±1.6 mm Hg/mL with patch versus 2.8±1.6 after MI). Although there was a nonsignificant trend for a mild increase in stiffness constant (0.07±0.05 mL−1 versus 0.05±0.03 after MI, P =0.06), LV end-diastolic pressure was unchanged as MR resolved. Coronary flow to noninfarcted regions was not reduced. Conclusions—An external device that repositions the PMs can reduce ischemic MR without compromising LV function. This relatively simple technique can be applied under echo guidance in the beating heart.


Journal of the American College of Cardiology | 1993

A new integrated system for three-dimensional echocardiographic reconstruction: Development and validation for ventricular volume with application in human subjects☆

Mark D. Handschumacher; Jean-Paul Lethor; Samuel C. Siu; Donato Mele; J.Miguel Rivera; Michael H. Picard; Arthur E. Weyman; Robert A. Levine

OBJECTIVES The purpose of this study was to improve three-dimensional echocardiographic reconstruction by developing an automated mechanism for integrating spark gap locating data with corresponding images in real time and to validate use of this mechanism for the measurement of left ventricular volume. BACKGROUND Initial approaches to three-dimensional echocardiographic reconstruction were often limited by inefficient reconstructive processes requiring manual coordination of two-dimensional images and corresponding spatial locating data. METHODS In this system, a single computer overlays the binary-encoded positional data on the two-dimensional echocardiographic image, which is then recorded on videotape. The same system allows images to be digitized, traced, analyzed and displayed in three dimensions. This system was validated by using it to reconstruct 11 ventricular phantoms (19 to 271 ml) and 11 gel-filled excised ventricles (21 to 236 ml) imaged in intersecting long- and short-axis views and by apical rotation. To measure cavity volume, a surface was generated by an algorithm that takes advantage of the full three-dimensional data set. RESULTS Reconstructed cavity volumes agreed well with actual values: y = 0.96x + 2.2 for the ventricular phantoms in long- and short-axis views (r = 0.99, SEE = 2.7 ml); y = 0.95x + 2.9 for the phantoms, reconstructed by apical rotation (r = 0.99, SEE = 2.7 ml); and y = 0.99x + 0.11 ml for the excised ventricles (reconstructed in long- and short-axis views; r = 0.99, SEE = 5.9 ml). The mean difference between three-dimensional and actual volumes was 3% of the mean (3.0 ml) for the phantoms and 6% (4.6 ml) for the excised ventricles. Observer variability was 2.3% for the phantoms and 5.6% for the excised ventricles. Application to 14 normal subjects demonstrated feasibility of left ventricular reconstruction, which provided values for stroke volume that agreed well with an independent Doppler measure (y = 0.97x + 0.94; r = 0.95, SEE = 3.2 ml), with an observer variability of 4.9% (2.4 ml). CONCLUSIONS A system has therefore been developed that automatically integrates locating and imaging data in no more time than the component two-dimensional echocardiographic scans. This system can accurately reconstruct ventricular volumes in vitro over a wide range and is feasible in vivo, thus laying the foundation for further applications. It has increased the efficiency of three-dimensional reconstruction and enhanced our ability to address clinical and research questions with this technique.


Circulation | 2008

Mitral Leaflet Adaptation to Ventricular Remodeling Occurrence and Adequacy in Patients With Functional Mitral Regurgitation

Miguel Chaput; Mark D. Handschumacher; Francois Tournoux; Lanqi Hua; J. Luis Guerrero; Gus J. Vlahakes; Robert A. Levine

Background— Functional mitral regurgitation (MR) is caused by systolic traction on the mitral leaflets related to ventricular distortion. Little is known about whether chronic tethering causes the mitral leaflet area to adapt to the geometric needs imposed by tethering, in part because of inability to reconstruct leaflet area in vivo. Our aim was to explore whether adaptive increases in leaflet area occur in patients with functional MR compared with normal subjects and to test the hypothesis that leaflet area influences MR severity. Methods and Results— A new method for 3-dimensional echocardiographic measurement of mitral leaflet area was developed and validated in vivo against 15 sheep heart valves, later excised. This method was then applied in 80 consecutive patients from 3 groups: patients with normal hearts by echocardiography (n=20), patients with functional MR caused by isolated inferior wall-motion abnormality or dilated cardiomyopathy (n=29), and patients with inferior wall-motion abnormality or dilated cardiomyopathy but no MR (n=31). Leaflet area was increased by 35±20% in patients with LV dysfunction compared with normal subjects. The ratio of leaflet to annular area was 1.95±0.40 and was not different among groups, which indicates a surplus leaflet area that adapts to left-heart changes. In contrast, the ratio of total leaflet area to the area required to close the orifice in midsystole was decreased in patients with functional MR compared with those with normal hearts (1.29±0.15 versus 1.78±0.39, P=0.001) and compared with patients with inferior wall-motion abnormality or dilated cardiomyopathy but no MR (1.81±0.38, P=0.001). After adjustment for measures of LV remodeling and tethering, a leaflet-to-closure area ratio <1.7 was associated with significant MR (odds ratio 23.2, 95% confidence interval 2.0 to 49.1, P=0.02). Conclusions— Mitral leaflet area increases in response to chronic tethering in patients with inferior wall-motion abnormality and dilated cardiomyopathy, but the development of significant MR is associated with insufficient leaflet area relative to that demanded by tethering geometry. The varying adequacy of leaflet adaptation may explain in part the heterogeneity of this disease among patients. The results suggest the need to understand the mechanisms that underlie leaflet adaptation and whether leaflet area can potentially be modified as part of the therapeutic approach.


Circulation | 2009

Active Adaptation of the Tethered Mitral Valve Insights Into a Compensatory Mechanism for Functional Mitral Regurgitation

Jacob P. Dal-Bianco; Elena Aikawa; Joyce Bischoff; J. Luis Guerrero; Mark D. Handschumacher; Suzanne Sullivan; Benjamin Johnson; James S. Titus; Yoshiko Iwamoto; Jill Wylie-Sears; Robert A. Levine; Alain Carpentier

Background— In patients with left ventricular infarction or dilatation, leaflet tethering by displaced papillary muscles frequently induces mitral regurgitation, which doubles mortality. Little is known about the biological potential of the mitral valve (MV) to compensate for ventricular remodeling. We tested the hypothesis that MV leaflet surface area increases over time with mechanical stretch created by papillary muscle displacement through cell activation, not passive stretching. Methods and Results— Under cardiopulmonary bypass, the papillary muscle tips in 6 adult sheep were retracted apically short of producing mitral regurgitation to replicate tethering without confounding myocardial infarction or turbulence. Diastolic leaflet area was quantified by 3-dimensional echocardiography over 61±6 days compared with 6 unstretched sheep MVs. Total diastolic leaflet area increased by 2.4±1.3 cm2 (17±10%) from 14.3±1.9 to 16.7±1.9 cm2 (P=0.006) with stretch with no change in the unstretched valves despite sham open heart surgery. Stretched MVs were 2.8 times thicker than normal (1.18±0.14 versus 0.42±0.14 mm; P<0.0001) at 60 days with an increased spongiosa layer. Endothelial cells (CD31+) coexpressing &agr;-smooth muscle actin were significantly more common by fluorescent cell sorting in tethered versus normal leaflets (41±19% versus 9±5%; P=0.02), indicating endothelial-mesenchymal transdifferentiation. &agr;-Smooth muscle actin-positive cells appeared in the atrial endothelium, penetrating into the interstitium, with increased collagen deposition. Thickened chordae showed endothelial and subendothelial &agr;-smooth muscle actin. Endothelial-mesenchymal transdifferentiation capacity also was demonstrated in cultured MV endothelial cells. Conclusions— Mechanical stresses imposed by papillary muscle tethering increase MV leaflet area and thickness, with cellular changes suggesting reactivated embryonic developmental pathways. Understanding such actively adaptive mechanisms can potentially provide therapeutic opportunities to augment MV area and reduce ischemic mitral regurgitation.

Collaboration


Dive into the Mark D. Handschumacher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge