Mark D. Koneff
United States Fish and Wildlife Service
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark D. Koneff.
Journal of Wildlife Management | 2011
James D. Nichols; Mark D. Koneff; Patricia J. Heglund; Melinda G. Knutson; Mark E. Seamans; James E. Lyons; John M. Morton; Malcolm T. Jones; G. Scott Boomer; Byron K. Williams
ABSTRACT Climate change and its associated uncertainties are of concern to natural resource managers. Although aspects of climate change may be novel (e.g., system change and nonstationarity), natural resource managers have long dealt with uncertainties and have developed corresponding approaches to decision-making. Adaptive resource management is an application of structured decision-making for recurrent decision problems with uncertainty, focusing on management objectives, and the reduction of uncertainty over time. We identified 4 types of uncertainty that characterize problems in natural resource management. We examined ways in which climate change is expected to exacerbate these uncertainties, as well as potential approaches to dealing with them. As a case study, we examined North American waterfowl harvest management and considered problems anticipated to result from climate change and potential solutions. Despite challenges expected to accompany the use of adaptive resource management to address problems associated with climate change, we conclude that adaptive resource management approaches will be the methods of choice for managers trying to deal with the uncertainties of climate change.
Wildlife Society Bulletin | 2006
Michael C. Runge; Fred A. Johnson; Michael G. Anderson; Mark D. Koneff; Eric T. Reed; Seth E. Mott
Abstract Two of the most significant management efforts affecting waterfowl populations in North America are the North American Waterfowl Management Plan (the Plan) and Federal harvest management programs. Both the Plan and harvest management are continental in scope, involve an extensive group of stakeholders, and rely on adaptive processes of biological planning, implementation, and evaluation. The development of these programs has occurred independently, however, and there has been little explicit recognition that both harvest and habitat effects should be considered for coherent management planning and evaluation. For example, the harvest strategy can affect whether population objectives of the Plan are met, irrespective of the success of the Plans habitat conservation efforts. Conversely, habitat conservation activities under the Plan can influence harvest potential and, therefore, the amount of hunting opportunity provided. It seems increasingly clear that the Plans waterfowl population objectives can only be useful for conservation planning and evaluation if they are accompanied by an explicit specification of the harvest strategy and environmental conditions under which they are to be achieved. This clarification also is necessary to ensure that Plan population objectives are not attained solely through the reduction of hunting opportunity. We believe then that it is imperative that these key waterfowl-management programs work to harmonize their objectives. Harvest management programs and the Plan ought to be working toward the same ends, but that is not possible so long as the mutually reinforcing relationship of these programs is obscured by ambiguities in their management objectives.
Journal of Wildlife Management | 2009
Michael C. Runge; John R. Sauer; Michael L. Avery; Bradley F. Blackwell; Mark D. Koneff
Abstract Legal removal of migratory birds from the wild occurs for several reasons, including subsistence, sport harvest, damage control, and the pet trade. We argue that harvest theory provides the basis for assessing the impact of authorized take, advance a simplified rendering of harvest theory known as potential biological removal as a useful starting point for assessing take, and demonstrate this approach with a case study of depredation control of black vultures (Coragyps atratus) in Virginia, USA. Based on data from the North American Breeding Bird Survey and other sources, we estimated that the black vulture population in Virginia was 91,190 (95% credible interval = 44,520–212,100) in 2006. Using a simple population model and available estimates of life-history parameters, we estimated the intrinsic rate of growth (rmax) to be in the range 7–14%, with 10.6% a plausible point estimate. For a take program to seek an equilibrium population size on the conservative side of the yield curve, the rate of take needs to be less than that which achieves a maximum sustained yield (0.5 × rmax). Based on the point estimate for rmax and using the lower 60% credible interval for population size to account for uncertainty, these conditions would be met if the take of black vultures in Virginia in 2006 was <3,533 birds. Based on regular monitoring data, allowable harvest should be adjusted annually to reflect changes in population size. To initiate discussion about how this assessment framework could be related to the laws and regulations that govern authorization of such take, we suggest that the Migratory Bird Treaty Act requires only that take of native migratory birds be sustainable in the long-term, that is, sustained harvest rate should be
Journal of Wildlife Management | 2009
Mark D. Koneff; J. Andrew Royle; Mark C. Otto; James S. Wortham; John K. Bidwell
Abstract We evaluated double-observer methods for aerial surveys as a means to adjust counts of waterfowl for incomplete detection. We conducted our study in eastern Canada and the northeast United States utilizing 3 aerial-survey crews flying 3 different types of fixed-wing aircraft. We reconciled counts of front- and rear-seat observers immediately following an observation by the rear-seat observer (i.e., on-the-fly reconciliation). We evaluated 6 a priori models containing a combination of several factors thought to influence detection probability including observer, seat position, aircraft type, and group size. We analyzed data for American black ducks (Anas rubripes) and mallards (A. platyrhynchos), which are among the most abundant duck species in this region. The best-supported model for both black ducks and mallards included observer effects. Sample sizes of black ducks were sufficient to estimate observer-specific detection rates for each crew. Estimated detection rates for black ducks were 0.62 (SE = 0.10), 0.63 (SE = 0.06), and 0.74 (SE = 0.07) for pilot-observers, 0.61 (SE = 0.08), 0.62 (SE = 0.06), and 0.81 (SE = 0.07) for other front-seat observers, and 0.43 (SE = 0.05), 0.58 (SE = 0.06), and 0.73 (SE = 0.04) for rear-seat observers. For mallards, sample sizes were adequate to generate stable maximum-likelihood estimates of observer-specific detection rates for only one aerial crew. Estimated observer-specific detection rates for that crew were 0.84 (SE = 0.04) for the pilot-observer, 0.74 (SE = 0.05) for the other front-seat observer, and 0.47 (SE = 0.03) for the rear-seat observer. Estimated observer detection rates were confounded by the position of the seat occupied by an observer, because observers did not switch seats, and by land-cover because vegetation and landform varied among crew areas. Double-observer methods with on-the-fly reconciliation, although not without challenges, offer one viable option to account for detection bias in aerial waterfowl surveys where birds are distributed at low density in remote areas that are inaccessible by ground crews. Double-observer methods, however, estimate only detection rate of animals that are potentially observable given the survey method applied. Auxiliary data and methods must be considered to estimate overall detection rate.
PLOS ONE | 2017
Mark D. Koneff; Guthrie S. Zimmerman; Chris P. Dwyer; Kathleen K. Fleming; Paul I. Padding; Patrick K. Devers; Fred A. Johnson; Michael C. Runge; Anthony J. Roberts; Marco Festa-Bianchet
Wildlife managers routinely seek to establish sustainable limits of sport harvest or other regulated forms of take while confronted with considerable uncertainty. A growing body of ecological research focuses on methods to describe and account for uncertainty in management decision-making and to prioritize research and monitoring investments to reduce the most influential uncertainties. We used simulation methods incorporating measures of demographic uncertainty to evaluate risk of overharvest and prioritize information needs for North American sea ducks (Tribe Mergini). Sea ducks are popular game birds in North America, yet they are poorly monitored and their population dynamics are poorly understood relative to other North American waterfowl. There have been few attempts to assess the sustainability of harvest of North American sea ducks, and no formal harvest strategy exists in the U.S. or Canada to guide management. The popularity of sea duck hunting, extended hunting opportunity for some populations (i.e., special seasons and/or bag limits), and population declines have led to concern about potential overharvest. We used Monte Carlo simulation to contrast estimates of allowable harvest and observed harvest and assess risk of overharvest for 7 populations of North American sea ducks: the American subspecies of common eider (Somateria mollissima dresseri), eastern and western populations of black scoter (Melanitta americana) and surf scoter (M. perspicillata), and continental populations of white-winged scoter (M. fusca) and long-tailed duck (Clangula hyemalis). We combined information from empirical studies and the opinions of experts through formal elicitation to create probability distributions reflecting uncertainty in the individual demographic parameters used in this assessment. Estimates of maximum growth (rmax), and therefore of allowable harvest, were highly uncertain for all populations. Long-tailed duck and American common eider appeared to be at high risk of overharvest (i.e., observed harvest < allowable harvest in 5–7% and 19–26% of simulations, respectively depending on the functional form of density dependence), whereas the other populations appeared to be at moderate risk to low risk (observed harvest < allowable harvest in 22–68% of simulations, again conditional on the form of density dependence). We also evaluated the sensitivity of the difference between allowable and observed harvest estimates to uncertainty in individual demographic parameters to prioritize information needs. We found that uncertainty in overall fecundity had more influence on comparisons of allowable and observed harvest than adult survival or observed harvest for all species except long-tailed duck. Although adult survival was characterized by less uncertainty than individual components of fecundity, it was identified as a high priority information need given the sensitivity of growth rate and allowable harvest to this parameter. Uncertainty about population size was influential in the comparison of observed and allowable harvest for 5 of the 6 populations where it factored into the assessment. While this assessment highlights a high degree of uncertainty in allowable harvest, it provides a framework for integration of improved data from future research and monitoring. It could also serve as the basis for harvest strategy development as management objectives and regulatory alternatives are specified by the management community.
Ecological Modelling | 2004
Mark D. Koneff; J. Andrew Royle
Journal of Wildlife Management | 2013
G. Scott Boomer; Guthrie S. Zimmerman; Nathan L. Zimpfer; Pamela R. Garrettson; Mark D. Koneff; Todd A. Sanders; Kimberly D. Magruder; J. Andrew Royle
Archive | 2007
Khristi Wilkins; Mark C. Otto; Guthrie S. Zimmerman; Emily D. Silverman; Mark D. Koneff
Archive | 2006
Khristi Wilkins; Mark C. Otto; Mark D. Koneff
Archive | 2005
Khristi Wilkins; Mark C. Otto; Mark D. Koneff