Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark D. Minden is active.

Publication


Featured researches published by Mark D. Minden.


Nature | 2014

Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia

Liran I. Shlush; Sasan Zandi; Amanda Mitchell; Weihsu Claire Chen; Joseph Brandwein; Vikas Gupta; James A. Kennedy; Aaron D. Schimmer; Andre C. Schuh; Karen Yee; Jessica McLeod; Monica Doedens; Jessie J. F. Medeiros; Rene Marke; Hyeoung Joon Kim; Kwon Lee; John D. McPherson; Thomas J. Hudson; Andrew M.K. Brown; Fouad Yousif; Quang M. Trinh; Lincoln Stein; Mark D. Minden; Jean C.Y. Wang; John E. Dick

In acute myeloid leukaemia (AML), the cell of origin, nature and biological consequences of initiating lesions, and order of subsequent mutations remain poorly understood, as AML is typically diagnosed without observation of a pre-leukaemic phase. Here, highly purified haematopoietic stem cells (HSCs), progenitor and mature cell fractions from the blood of AML patients were found to contain recurrent DNMT3A mutations (DNMT3Amut) at high allele frequency, but without coincident NPM1 mutations (NPM1c) present in AML blasts. DNMT3Amut-bearing HSCs showed a multilineage repopulation advantage over non-mutated HSCs in xenografts, establishing their identity as pre-leukaemic HSCs. Pre-leukaemic HSCs were found in remission samples, indicating that they survive chemotherapy. Therefore DNMT3Amut arises early in AML evolution, probably in HSCs, leading to a clonally expanded pool of pre-leukaemic HSCs from which AML evolves. Our findings provide a paradigm for the detection and treatment of pre-leukaemic clones before the acquisition of additional genetic lesions engenders greater therapeutic resistance.


Journal of Experimental Medicine | 2010

Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations

Stefan Gross; Rob A. Cairns; Mark D. Minden; Edward M. Driggers; Mark A. Bittinger; Hyun Gyung Jang; Masato Sasaki; Shengfang Jin; David P. Schenkein; Shinsan M. Su; Lenny Dang; Valeria Fantin; Tak W. Mak

Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2), are present in most gliomas and secondary glioblastomas, but are rare in other neoplasms. IDH1/2 mutations are heterozygous, and affect a single arginine residue. Recently, IDH1 mutations were identified in 8% of acute myelogenous leukemia (AML) patients. A glioma study revealed that IDH1 mutations cause a gain-of-function, resulting in the production and accumulation of 2-hydroxyglutarate (2-HG). Genotyping of 145 AML biopsies identified 11 IDH1 R132 mutant samples. Liquid chromatography-mass spectrometry metabolite screening revealed increased 2-HG levels in IDH1 R132 mutant cells and sera, and uncovered two IDH2 R172K mutations. IDH1/2 mutations were associated with normal karyotypes. Recombinant IDH1 R132C and IDH2 R172K proteins catalyze the novel nicotinamide adenine dinucleotide phosphate (NADPH)–dependent reduction of α-ketoglutarate (α-KG) to 2-HG. The IDH1 R132C mutation commonly found in AML reduces the affinity for isocitrate, and increases the affinity for NADPH and α-KG. This prevents the oxidative decarboxylation of isocitrate to α-KG, and facilitates the conversion of α-KG to 2-HG. IDH1/2 mutations confer an enzymatic gain of function that dramatically increases 2-HG in AML. This provides an explanation for the heterozygous acquisition of these mutations during tumorigenesis. 2-HG is a tractable metabolic biomarker of mutant IDH1/2 enzyme activity.


Journal of Clinical Oncology | 2012

Multicenter, Randomized, Open-Label, Phase III Trial of Decitabine Versus Patient Choice, With Physician Advice, of Either Supportive Care or Low-Dose Cytarabine for the Treatment of Older Patients With Newly Diagnosed Acute Myeloid Leukemia

Hagop M. Kantarjian; Xavier Thomas; Anna Dmoszynska; Agnieszka Wierzbowska; Grzegorz Mazur; Jiri Mayer; Jyh Pyng Gau; Wen-Chien Chou; Rena Buckstein; Jaroslav Cermak; Ching Yuan Kuo; Albert Oriol; Farhad Ravandi; Stefan Faderl; Jacques Delaunay; Daniel Lysák; Mark D. Minden; Christopher Arthur

PURPOSE This multicenter, randomized, open-label, phase III trial compared the efficacy and safety of decitabine with treatment choice (TC) in older patients with newly diagnosed acute myeloid leukemia (AML) and poor- or intermediate-risk cytogenetics. PATIENTS AND METHODS Patients (N = 485) age ≥ 65 years were randomly assigned 1:1 to receive decitabine 20 mg/m(2) per day as a 1-hour intravenous infusion for five consecutive days every 4 weeks or TC (supportive care or cytarabine 20 mg/m(2) per day as a subcutaneous injection for 10 consecutive days every 4 weeks). The primary end point was overall survival (OS); the secondary end point was the complete remission (CR) rate plus the CR rate without platelet recovery (CRp). Adverse events (AEs) were recorded. RESULTS The primary analysis with 396 deaths (81.6%) showed a nonsignificant increase in median OS with decitabine (7.7 months; 95% CI, 6.2 to 9.2) versus TC (5.0 months; 95% CI, 4.3 to 6.3; P = .108; hazard ratio [HR], 0.85; 95% CI, 0.69 to 1.04). An unplanned analysis with 446 deaths (92%) indicated the same median OS (HR, 0.82; 95% CI, 0.68 to 0.99; nominal P = .037). The CR rate plus CRp was 17.8% with decitabine versus 7.8% with TC (odds ratio, 2.5; 95% CI, 1.4 to 4.8; P = .001). AEs were similar for decitabine and cytarabine, although patients received a median of four cycles of decitabine versus two cycles of TC. The most common drug-related AEs with decitabine were thrombocytopenia (27%) and neutropenia (24%). CONCLUSION In older patients with AML, decitabine improved response rates compared with standard therapies without major differences in safety. An unplanned survival analysis showed a benefit for decitabine, which was not observed at the time of the primary analysis.


Nature | 2011

Evolution of human BCR–ABL1 lymphoblastic leukaemia-initiating cells

Faiyaz Notta; Charles G. Mullighan; Jean C.Y. Wang; Armando Poeppl; Sergei Doulatov; Letha A. Phillips; Jing Ma; Mark D. Minden; James R. Downing; John E. Dick

Many tumours are composed of genetically diverse cells; however, little is known about how diversity evolves or the impact that diversity has on functional properties. Here, using xenografting and DNA copy number alteration (CNA) profiling of human BCR–ABL1 lymphoblastic leukaemia, we demonstrate that genetic diversity occurs in functionally defined leukaemia-initiating cells and that many diagnostic patient samples contain multiple genetically distinct leukaemia-initiating cell subclones. Reconstructing the subclonal genetic ancestry of several samples by CNA profiling demonstrated a branching multi-clonal evolution model of leukaemogenesis, rather than linear succession. For some patient samples, the predominant diagnostic clone repopulated xenografts, whereas in others it was outcompeted by minor subclones. Reconstitution with the predominant diagnosis clone was associated with more aggressive growth properties in xenografts, deletion of CDKN2A and CDKN2B, and a trend towards poorer patient outcome. Our findings link clonal diversity with leukaemia-initiating-cell function and underscore the importance of developing therapies that eradicate all intratumoral subclones.


Nature Medicine | 2012

Inhibition of the LSD1 (KDM1A) demethylase reactivates the all- trans -retinoic acid differentiation pathway in acute myeloid leukemia

Tino Schenk; Weihsu Claire Chen; Stefanie Göllner; Louise Howell; Liqing Jin; Katja Hebestreit; Hans-Ulrich Klein; Andreea C. Popescu; Alan Kenneth Burnett; Ken I. Mills; Robert A. Casero; Laurence J. Marton; Patrick M. Woster; Mark D. Minden; Martin Dugas; Jean C.Y. Wang; John E. Dick; Carsten Müller-Tidow; Kevin Petrie; Arthur Zelent

Acute promyelocytic leukemia (APL), a cytogenetically distinct subtype of acute myeloid leukemia (AML), characterized by the t(15;17)-associated PML-RARA fusion, has been successfully treated with therapy utilizing all-trans-retinoic acid (ATRA) to differentiate leukemic blasts. However, among patients with non-APL AML, ATRA-based treatment has not been effective. Here we show that, through epigenetic reprogramming, inhibitors of lysine-specific demethylase 1 (LSD1, also called KDM1A), including tranylcypromine (TCP), unlocked the ATRA-driven therapeutic response in non-APL AML. LSD1 inhibition did not lead to a large-scale increase in histone 3 Lys4 dimethylation (H3K4me2) across the genome, but it did increase H3K4me2 and expression of myeloid-differentiation–associated genes. Notably, treatment with ATRA plus TCP markedly diminished the engraftment of primary human AML cells in vivo in nonobese diabetic (NOD)-severe combined immunodeficient (SCID) mice, suggesting that ATRA in combination with TCP may target leukemia-initiating cells. Furthermore, initiation of ATRA plus TCP treatment 15 d after engraftment of human AML cells in NOD-SCID γ (with interleukin-2 (IL-2) receptor γ chain deficiency) mice also revealed the ATRA plus TCP drug combination to have a potent anti-leukemic effect that was superior to treatment with either drug alone. These data identify LSD1 as a therapeutic target and strongly suggest that it may contribute to AML pathogenesis by inhibiting the normal pro-differentiative function of ATRA, paving the way for new combinatorial therapies for AML.


Nature Genetics | 2013

The genomic landscape of hypodiploid acute lymphoblastic leukemia

Linda Holmfeldt; Lei Wei; Ernesto Diaz-Flores; Michael D. Walsh; Jinghui Zhang; Li Ding; Debbie Payne-Turner; Michelle L. Churchman; Anna Andersson; Shann Ching Chen; Kelly McCastlain; Jared Becksfort; Jing Ma; Gang Wu; Samir N. Patel; Susan L. Heatley; Letha A. Phillips; Guangchun Song; John Easton; Matthew Parker; Xiang Chen; Michael Rusch; Kristy Boggs; Bhavin Vadodaria; Erin Hedlund; Christina D. Drenberg; Sharyn D. Baker; Deqing Pei; Cheng Cheng; Robert Huether

The genetic basis of hypodiploid acute lymphoblastic leukemia (ALL), a subtype of ALL characterized by aneuploidy and poor outcome, is unknown. Genomic profiling of 124 hypodiploid ALL cases, including whole-genome and exome sequencing of 40 cases, identified two subtypes that differ in the severity of aneuploidy, transcriptional profiles and submicroscopic genetic alterations. Near-haploid ALL with 24–31 chromosomes harbor alterations targeting receptor tyrosine kinase signaling and Ras signaling (71%) and the lymphoid transcription factor gene IKZF3 (encoding AIOLOS; 13%). In contrast, low-hypodiploid ALL with 32–39 chromosomes are characterized by alterations in TP53 (91.2%) that are commonly present in nontumor cells, IKZF2 (encoding HELIOS; 53%) and RB1 (41%). Both near-haploid and low-hypodiploid leukemic cells show activation of Ras-signaling and phosphoinositide 3-kinase (PI3K)-signaling pathways and are sensitive to PI3K inhibitors, indicating that these drugs should be explored as a new therapeutic strategy for this aggressive form of leukemia.


Blood | 2015

International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts

Hervé Dombret; John F. Seymour; Aleksandra Butrym; Agnieszka Wierzbowska; Dominik Selleslag; Jun Ho Jang; Rajat Kumar; J Cavenagh; Andre C. Schuh; Anna Candoni; Christian Recher; Irwindeep Sandhu; Teresa Bernal del Castillo; Haifa Kathrin Al-Ali; Giovanni Martinelli; Jose Falantes; Richard Noppeney; Richard Stone; Mark D. Minden; Heidi McIntyre; S. Songer; Lela M. Lucy; C.L. Beach; Hartmut Döhner

This multicenter, randomized, open-label, phase 3 trial evaluated azacitidine efficacy and safety vs conventional care regimens (CCRs) in 488 patients age ≥65 years with newly diagnosed acute myeloid leukemia (AML) with >30% bone marrow blasts. Before randomization, a CCR (standard induction chemotherapy, low-dose ara-c, or supportive care only) was preselected for each patient. Patients then were assigned 1:1 to azacitidine (n = 241) or CCR (n = 247). Patients assigned to CCR received their preselected treatment. Median overall survival (OS) was increased with azacitidine vs CCR: 10.4 months (95% confidence interval [CI], 8.0-12.7 months) vs 6.5 months (95% CI, 5.0-8.6 months), respectively (hazard ratio [HR] was 0.85; 95% CI, 0.69-1.03; stratified log-rank P = .1009). One-year survival rates with azacitidine and CCR were 46.5% and 34.2%, respectively (difference, 12.3%; 95% CI, 3.5%-21.0%). A prespecified analysis censoring patients who received AML treatment after discontinuing study drug showed median OS with azacitidine vs CCR was 12.1 months (95% CI, 9.2-14.2 months) vs 6.9 months (95% CI, 5.1-9.6 months; HR, 0.76; 95% CI, 0.60-0.96; stratified log-rank P = .0190). Univariate analysis showed favorable trends for azacitidine compared with CCR across all subgroups defined by baseline demographic and disease features. Adverse events were consistent with the well-established safety profile of azacitidine. Azacitidine may be an important treatment option for this difficult-to-treat AML population. This trial was registered at www.clinicaltrials.gov as #NCT01074047.


Nature Reviews Cancer | 2007

Myelodysplastic syndromes: the complexity of stem-cell diseases.

Seth J. Corey; Mark D. Minden; Dwayne L. Barber; Hagop M. Kantarjian; Jean C.Y. Wang; Aaron D. Schimmer

The prevalence of patients with myelodysplastic syndromes (MDS) is increasing owing to an ageing population and increased awareness of these diseases. MDS represent many different conditions, not just a single disease, that are grouped together by several clinical characteristics. A striking feature of MDS is genetic instability, and a large proportion of cases result in acute myeloid leukaemia (AML). We Review three emerging principles of MDS biology: stem-cell dysfunction and the overlap with AML, genetic instability and the deregulation of apoptosis, in the context of inherited bone marrow-failure syndromes, and treatment-related MDS and AML.


Cancer Cell | 2011

INHIBITION OF MITOCHONDRIAL TRANSLATION AS A THERAPEUTIC STRATEGY FOR HUMAN ACUTE MYELOID LEUKEMIA

Marko Skrtic; Shrivani Sriskanthadevan; Bozhena Jhas; Marinella Gebbia; Xiaoming Wang; Zezhou Wang; Rose Hurren; Yulia Jitkova; Marcela Gronda; Neil MacLean; Courteney Lai; Yanina Eberhard; Justyna Bartoszko; Paul A. Spagnuolo; Angela Rutledge; Alessandro Datti; Troy Ketela; Jason Moffat; Brian H. Robinson; Jessie H. Cameron; Jeffery L. Wrana; Connie J. Eaves; Mark D. Minden; Jean C.Y. Wang; John E. Dick; Keith Humphries; Corey Nislow; Guri Giaever; Aaron D. Schimmer

To identify FDA-approved agents targeting leukemic cells, we performed a chemical screen on two human leukemic cell lines and identified the antimicrobial tigecycline. A genome-wide screen in yeast identified mitochondrial translation inhibition as the mechanism of tigecycline-mediated lethality. Tigecycline selectively killed leukemia stem and progenitor cells compared to their normal counterparts and also showed antileukemic activity in mouse models of human leukemia. ShRNA-mediated knockdown of EF-Tu mitochondrial translation factor in leukemic cells reproduced the antileukemia activity of tigecycline. These effects were derivative of mitochondrial biogenesis that, together with an increased basal oxygen consumption, proved to be enhanced in AML versus normal hematopoietic cells and were also important for their difference in tigecycline sensitivity.


Blood | 2008

Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia.

Guillermo Garcia-Manero; Sarit Assouline; Jorge Cortes; Zeev Estrov; Hagop M. Kantarjian; Hui Yang; Willie Newsome; Wilson H. Miller; Caroline Rousseau; Ann Kalita; Claire Bonfils; Marja Dubay; Tracy Patterson; Zuomei Li; Jeffrey M. Besterman; Gregory K. Reid; Eric Laille; Robert E. Martell; Mark D. Minden

MGCD0103 is an isotype-selective inhibitor of histone deacetylases (HDACs) targeted to isoforms 1, 2, 3, and 11. In a phase 1 study in patients with leukemia or myelodysplastic syndromes (MDS), MGCD0103 was administered orally 3 times weekly without interruption. Twenty-nine patients with a median age of 62 years (range, 32-84 years) were enrolled at planned dose levels (20, 40, and 80 mg/m(2)). The majority of patients (76%) had acute myelogenous leukemia (AML). In all, 24 (83%) of 29 patients had received 1 or more prior chemotherapies (range, 0-5), and 18 (62%) of 29 patients had abnormal cytogenetics. The maximum tolerated dose was determined to be 60 mg/m(2), with dose-limiting toxicities (DLTs) of fatigue, nausea, vomiting, and diarrhea observed at higher doses. Three patients achieved a complete bone marrow response (blasts <or= 5%). Pharmacokinetic analyses indicated absorption of MGCD0103 within 1 hour and an elimination half-life in plasma of 9 (+/- 2) hours. Exposure to MGCD0103 was proportional to dose up to 60 mg/m(2). Analysis of peripheral white cells demonstrated induction of histone acetylation and dose-dependent inhibition of HDAC enzyme activity. In summary, MGCD0103 was safe and had antileukemia activity that was mechanism based in patients with advanced leukemia.

Collaboration


Dive into the Mark D. Minden's collaboration.

Top Co-Authors

Avatar

Aaron D. Schimmer

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Vikas Gupta

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Yee

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

John E. Dick

Hospital for Sick Children

View shared research outputs
Top Co-Authors

Avatar

Hans A. Messner

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Marcela Gronda

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Rose Hurren

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Jean C.Y. Wang

University Health Network

View shared research outputs
Researchain Logo
Decentralizing Knowledge