Mark D. Young
Texas A&M University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark D. Young.
Comments on Inorganic Chemistry | 2010
Qian-Rong Fang; Trevor A. Makal; Mark D. Young; Hong-Cai Zhou
Metal–organic frameworks (MOFs), which consist of metal ions or clusters and organic bridging ligands, have recently emerged as an important family of porous materials. In this comment, we discuss the current state of the field pertaining to MOFs with pore sizes between 2 and 50 nm, which have great application potential in gas storage, separation, sensor, catalysis, and drug delivery. This review will cover mesoporous MOFs containing 3-D channels, 1-D channels, and large cavities, as well as those based on supramolecular templates.
Inorganic Chemistry | 2010
Gina M. Chiarella; F. Albert Cotton; Carlos A. Murillo; Mark D. Young; Qinliang Zhao
Syntheses and characterization of two Ru(2)(6+) paddlewheel compounds having very different magnetic behavior are reported. The compounds Ru(2)(tbn)(4)Cl(2), 1, and Ru(2)(tbo)(4)Cl(2), 2 (where tbn = the anion of 1,5,7-triazabicyclo[4.3.0]non-6-ene and tbo = the anion of 1,4,6-triazabicyclo[3.3.0]oct-4-ene), have four equatorial bicyclic guanidinate ligands and two chloride ions in axial positions. They show large disparity in Ru-Ru distances of about 0.11 A (2.389(3) and 2.499(3) A at 30 K for 1 and 2, respectively) that is attributed to the divergence in the bite angle of the ligand. Variable temperature structural data show no significant changes in the Ru-Ru distances between 30 and 213 K suggesting that the electronic structure remains unchanged in this temperature range for both compounds. Magnetic studies of 1 indicate there are two unpaired electrons at room temperature but the compound behaves as essentially diamagnetic at approximately 2 K. Compound 2 is non-magnetic across all temperatures in the range of 2 to 300 K. Density functional theory calculations suggest a pi(4)pi*(4)delta(2) electronic configuration for 2, while the magnetic behavior and structural data for 1 are consistent with a sigma(2)pi(4)delta(2)pi*(2) electronic configuration. This shows the importance of the ligand bite angle in determining the electronic configuration of the diruthenium unit and a way to tune magnetic behavior.
Inorganic Chemistry | 2010
F. Albert Cotton; Gina M. Chiarella; N. S. Dalal; Carlos A. Murillo; Zhenxing Wang; Mark D. Young
Variable temperature structural and EPR studies are reported on the paddlewheel compound [Os(2)(hpp)(4)Cl(2)]PF(6), 1, (hpp = the anion of the bicyclic guanidine 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine) that contains a rare M(2)(7+) species, with the goal of determining whether the unpaired electron resides in a metal- or ligand-based molecular orbital. Crystallographic studies show that the Os-Os distance in 1 remains essentially unchanged from 213 to 30 K, which is consistent with no changes in electronic structure in this range of temperature. It is noteworthy that the metal-metal distance in 1 is about 0.05 A shorter than that in the precursor Os(2)(hpp)(4)Cl(2), which is consistent with the loss of an electron in a delta* orbital. EPR spectra of 1 were measured in dilute frozen solution, powder, and single crystals. The spectra were observable only below about 50 K, with an exceptionally large line width, approximately 3,750 gauss, for a powdered sample, due to dipolar interactions and to short relaxation times. There is a very small average g value of approximately 0.750 and a cylindrical symmetry about the Os-Os bond. These data are consistent with the unpaired electron orbital having a large L value, such as that of a delta* orbital. The combination of X-ray structural data, the short relaxation time, and the magnetic data provide strong evidence that the unpaired electron in this nine-electron Os(2)(7+) species is localized in a metal-based orbital with this electron residing predominantly in a delta* orbital rather than in a pi* orbital and, thus, having an electronic configuration of sigma(2)pi(4)delta(2)delta*.
Inorganic Chemistry | 2012
Gina M. Chiarella; F. Albert Cotton; N. S. Dalal; Carlos A. Murillo; Zhenxing Wang; Mark D. Young
Three rare compounds have been synthesized and structurally characterized; these species have paddlewheel structures and Re(2)(7+) cores surrounded by four bicyclic guanidinates and two axial ligands along the Re-Re axis. Each possesses a formal bond order of 3.5 and a σ(2)π(4)δ(1) electronic configuration that entails the presence of one unpaired electron for each compound. The guanidinate ligands characterized by having CH(2) entities and a central C(N)(3) unit that joins two cyclic units--one having two fused 6-membered rings (hpp) and the other having a 5- and a 6-membered ring fused together (tbn)--allowed the isolation of [Re(2)(tbn)(4)Cl(2)]PF(6), 1, [Re(2)(tbn)(4)Cl(2)]Cl, 2, and [Re(2)(hpp)(4)(O(3)SCF(3))(2)](O(3)SCF(3)), 3. Because of the larger bite angle of the tbn relative to the hpp ligand, the Re-Re bond distances in 1 and 2 (2.2691(14) and 2.2589(14) Å, respectively) are much longer than that in 3 (2.1804(8) Å). Importantly, electron paramagnetic resonance (EPR) studies at both X-band (~9.4 GHz) and W-band (112 GHz) in the solid and in frozen solution show unusually low g-values (~1.75) and the absence of zero-field splitting, providing direct evidence for the presence of one metal-based unpaired electron for both 1 and 3. These spectroscopic data suggest that the unsymmetrical 5-/6-membered ligand leads to the formation of isomers, as shown by significantly broader EPR signals for 1 than for 3, even though both compounds possess what appears to be similar ideal crystallographic axial symmetry on the X-ray time scale.
Inorganic Chemistry | 2011
Gina M. Chiarella; F. Albert Cotton; Carlos A. Murillo; Mark D. Young
Four Re(2)(6+) paddlewheel compounds with equatorial bicyclic guanidinate ligands and two monodentate anions in axial positions show a large change in the metal-metal distance that depends on the bite angle of the ligands and whether there are pi interactions between the dimetal unit and the axial ligands. These processes are accompanied by significant changes in the redox behavior. The two pairs of compounds that have been synthesized are Re(2)(tbn)(4)Cl(2), 1, and Re(2)(tbn)(4)(SO(3)CF(3))(2), 2, as well as Re(2)(tbo)(4)Cl(2), 3, and Re(2)(tbo)(4)(SO(3)CF(3))(2), 4, where tbn is the anion of a bicyclic guanidinate with six- and five-membered rings (1,5,7-triazabicyclo[4.3.0]non-6-ene) and tbo is an analogous species with two five-membered rings (the anion of 1,4,6-triazabicyclo[3.3.0]oct-4-ene). For both 1 and 2 as well as for 3 and 4, the metal-metal distances are shorter for the triflate species than for the chloride analogues because of the π interactions of the Cl with the π bonds of the triply bonded Re(2)(6+) cores compounded by a small but symmetry allowed interaction between the antisymmetric combination of the filled σp orbitals of the chlorine atom and the empty σ* orbital of the metal atoms. In addition there is a significant increase in the Re-Re distance from that in the six/five tbn-membered ring to the five/five-membered tbo species. Electrochemical measurements show two redox processes for each set of compounds corresponding to the uncommon Re(2)(6+) → Re(2)(7+) and Re(2)(7+) → Re(2)(8+) processes, which are strongly affected by the bite angle of the guanidinate ligand as well as the ability of the axial ligands to interact with the π orbitals of the dirhenium unit. For 1 and 3, the first redox couples are at 0.146 and 0.487 V, respectively, while for 2 and 4 these are at 0.430 and 0.698 V, respectively.
Coordination Chemistry Reviews | 2009
Ryan J. Kuppler; Daren J. Timmons; Qian-Rong Fang; Jian-Rong Li; Trevor A. Makal; Mark D. Young; Daqiang Yuan; Dan Zhao; Wenjuan Zhuang; Hong-Cai Zhou
Inorganic Chemistry | 2008
F. Albert Cotton; Carlos A. Murillo; Mark D. Young; Rongmin Yu; Qinliang Zhao
European Journal of Inorganic Chemistry | 2008
F. Albert Cotton; Carlos A. Murillo; Qingsheng Wang; Mark D. Young
Inorganica Chimica Acta | 2015
Mark D. Young; Qiang Zhang; Hong-Cai Zhou
Polyhedron | 2013
Gina M. Chiarella; F. Albert Cotton; Sergey A. Ibragimov; Carlos A. Murillo; Chad C. Wilkinson; Mark D. Young