Mark E. Fels
Utah State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark E. Fels.
Acta Applicandae Mathematicae | 1999
Mark E. Fels; Peter J. Olver
The primary goal of this paper is to provide a rigorous theoretical justification of Cartan’s method of moving frames for arbitrary finite-dimensional Lie group actions on manifolds. The general theorems are based a new regularized version of the moving frame algorithm, which is of both theoretical and practical use. Applications include a new approach to the construction and classification of differential invariants and invariant differential operators on jet bundles, as well as equivalence, symmetry, and rigidity theorems for submanifolds under general transformation groups. The method also leads to complete classifications of generating systems of differential invariants, explicit commutation formulae for the associated invariant differential operators, and a general classification theorem for syzygies of the higher order differentiated differential invariants. A variety of illustrative examples demonstrate how the method can be directly applied to practical problems arising in geometry, invariant theory, and differential equations.
Acta Applicandae Mathematicae | 1998
Mark E. Fels; Peter J. Olver
This is the first in a series of papers devoted to the development and applications of a new general theory of moving frames. In this paper, we formulate a practical and easy to implement explicit method to compute moving frames, invariant differential forms, differential invariants and invariant differential operators, and solve general equivalence problems for both finite-dimensional Lie group actions and infinite Lie pseudo-groups. A wide variety of applications, ranging from differential equations to differential geometry to computer vision are presented. The theoretical justifications for the moving coframe algorithm will appear in the next paper in this series.
Communications in Mathematical Physics | 2000
I. Anderson; Mark E. Fels; Charles G. Torre
Abstract:We present a generalization of Lies method for finding the group invariant solutions to a system of partial differential equations. Our generalization relaxes the standard transversality assumption and encompasses the common situation where the reduced differential equations for the group invariant solutions involve both fewer dependent and independent variables. The theoretical basis for our method is provided by a general existence theorem for the invariant sections, both local and global, of a bundle on which a finite dimensional Lie group acts. A simple and natural extension of our characterization of invariant sections leads to an intrinsic characterization of the reduced equations for the group invariant solutions for a system of differential equations. The characterization of both the invariant sections and the reduced equations are summarized schematically by the kinematic and dynamic reduction diagrams and are illustrated by a number of examples from fluid mechanics, harmonic maps, and general relativity. This work also provides the theoretical foundations for a further detailed study of the reduced equations for group invariant solutions.
Transactions of the American Mathematical Society | 1996
Mark E. Fels
A simple invariant characterization of the scalar fourth-order ordinary differential equations which admit a variational multiplier is given. The necessary and sufficient conditions for the existence of a multiplier are expressed in terms of the vanishing of two relative invariants which can be associated with any fourth-order equation through the application of Cartan’s equivalence method. The solution to the inverse problem for fourth-order scalar equations provides the solution to an equivalence problem for secondorder Lagrangians, as well as the precise relationship between the symmetry algebra of a variational equation and the divergence symmetry algebra of the associated Lagrangian.
arXiv: Mathematical Physics | 2001
I. Anderson; Mark E. Fels; Charles G. Torre
Abstract:We present a generalization of Lies method for finding the group invariant solutions to a system of partial differential equations. Our generalization relaxes the standard transversality assumption and encompasses the common situation where the reduced differential equations for the group invariant solutions involve both fewer dependent and independent variables. The theoretical basis for our method is provided by a general existence theorem for the invariant sections, both local and global, of a bundle on which a finite dimensional Lie group acts. A simple and natural extension of our characterization of invariant sections leads to an intrinsic characterization of the reduced equations for the group invariant solutions for a system of differential equations. The characterization of both the invariant sections and the reduced equations are summarized schematically by the kinematic and dynamic reduction diagrams and are illustrated by a number of examples from fluid mechanics, harmonic maps, and general relativity. This work also provides the theoretical foundations for a further detailed study of the reduced equations for group invariant solutions.
Canadian Journal of Mathematics | 2006
Mark E. Fels; A. G. Renner
A method, due to ´ Elie Cartan, is used to give an algebraic classification of the non-reductive homogeneouspseudo-Riemannianmanifoldsofdimensionfour. OnlyonecasewithLorentzsignature can be Einstein without having constant curvature, and two cases with (2,2) signature are Einstein of which one is Ricci-flat. If a four-dimensional non-reductive homogeneous pseudo-Riemannian manifold is simply connected, then it is shown to be diffeomorphic to R 4 . All metrics for the simply connected non-reductive Einstein spaces are given explicitly. There are no non-reductive pseudo- Riemannian homogeneous spaces of dimension two and none of dimension three with connected isotropy subgroup.
Foundations of Computational Mathematics | 2007
Mark E. Fels
The process of integrating an nth-order scalar ordinary differential equation with symmetry is revisited in terms of Pfaffian systems. This formulation immediately provides a completely algebraic method to determine the initial conditions and the corresponding solutions which are invariant under a one parameter subgroup of a symmetry group. To determine the noninvariant solutions the problem splits into three cases. If the dimension of the symmetry groups is less than the order of the equation, then there exists an open dense set of initial conditions whose corresponding solutions can be found by integrating a quotient Pfaffian system on a quotient space, and integrating an equation of fundamental Lie type associated with the symmetry group. If the dimension of the symmetry group is equal to the order of the equation, then there exists an open dense set of initial conditions whose corresponding solutions are obtained either by solving an equation of fundamental Lie type associated with the symmetry group, or the solutions are invariant under a one-parameter subgroup. If the dimension of the symmetry group is greater than the order of the equation, then there exists an open dense set of initial conditions where the solutions can either be determined by solving an equation of fundamental Lie type for a solvable Lie group, or are invariant. In each case the initial conditions, the quotient Pfaffian system, and the equation of Lie type are all determined algebraically. Examples of scalar ordinary differential equations and a Pfaffian system are given.
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences | 1990
Mark E. Fels
It is shown that there exist separable systems for the Dirac operator on four-dimensional lorentzian spin manifolds that are not factorizable in the sense of Miller. The symmetry operators associated to these new separable systems are of higher order than the Dirac operator. They are characterized in the second-order case in terms of quadratic first integrals of the geodesic flow satisfying additional invariant conditions.
Archive | 2009
I. Anderson; Mark E. Fels
This article reviews some recent theoretical results about the structure of Darboux integrable differential systems and their relationship with symmetry reduction of exterior differential systems. The symmetry reduction representation of Darboux integrable equations is then used to derive some new and unusual transformations.
Archive | 2001
Mark E. Fels; Peter J. Olver
First introduced by Gaston Darboux, and then brought to maturity by Ehe Cartan, [4, 5], the theory of moving frames (“reperes mobiles”) is widely acknowledged to be a powerful tool for studying the geometric properties of submanifolds under the action of a transformation group. While the basic ideas of moving frames for classical group actions are now ubiquitous in differential geometry, the theory and practice of the moving frame method for more general transformation group actions has remained relatively undeveloped. The famous critical assessment by Weyl in his review [27] of Cartan’s seminal book [5] retains its perspicuity to this day: