Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark E. Lobatto is active.

Publication


Featured researches published by Mark E. Lobatto.


Nano Letters | 2008

Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform

David P. Cormode; Torjus Skajaa; Matti M. van Schooneveld; Rolf Koole; Peter A. Jarzyna; Mark E. Lobatto; Claudia Calcagno; Alessandra Barazza; Ronald E. Gordon; Pat Zanzonico; Edward A. Fisher; Zahi A. Fayad; Willem J. M. Mulder

High density lipoprotein (HDL) is an important natural nanoparticle that may be modified for biomedical imaging purposes. Here we developed a novel technique to create unique multimodality HDL mimicking nanoparticles by incorporation of gold, iron oxide, or quantum dot nanocrystals for computed tomography, magnetic resonance, and fluorescence imaging, respectively. By including additional labels in the corona of the particles, they were made multifunctional. The characteristics of these nanoparticles, as well as their in vitro and in vivo behavior, revealed that they closely mimic native HDL.


Nature Reviews Drug Discovery | 2011

Perspectives and opportunities for nanomedicine in the management of atherosclerosis

Mark E. Lobatto; Valentin Fuster; Zahi A. Fayad; Willem J. M. Mulder

The use of nanotechnology for medical purposes — nanomedicine — has grown exponentially over the past few decades. This is exemplified by the US Food and Drug Administrations approval of several nanotherapies for various conditions, as well as the funding of nanomedical programmes worldwide. Although originally the domain of anticancer therapy, recent advances have illustrated the considerable potential of nanomedicine in the diagnosis and treatment of atherosclerosis. This Review elaborates on nanoparticle-targeting concepts in atherosclerotic disease, provides an overview of the use of nanomedicine in atherosclerosis, and discusses potential future applications and clinical benefits.


Nature Communications | 2014

A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation

Raphaël Duivenvoorden; Jun Tang; David P. Cormode; Aneta J. Mieszawska; David Izquierdo-Garcia; Canturk Ozcan; Maarten J. Otten; Neeha Zaidi; Mark E. Lobatto; Sarian M. van Rijs; Bram Priem; Emma L. Kuan; Catherine Martel; Bernd Hewing; Hendrik B. Sager; Matthias Nahrendorf; Gwendalyn J. Randolph; Erik S.G. Stroes; Valentin Fuster; Edward A. Fisher; Zahi A. Fayad; Willem J. M. Mulder

Inflammation is a key feature of atherosclerosis and a target for therapy. Statins have potent anti-inflammatory properties but these cannot be fully exploited with oral statin therapy due to low systemic bioavailability. Here we present an injectable reconstituted high-density lipoprotein (rHDL) nanoparticle carrier vehicle that delivers statins to atherosclerotic plaques. We demonstrate the anti-inflammatory effect of statin-rHDL in vitro and show this effect is mediated through inhibition of the mevalonate pathway. We also apply statin-rHDL nanoparticles in vivo in an apolipoprotein E-knockout mouse model of atherosclerosis and show they accumulate in atherosclerotic lesions where they directly affect plaque macrophages. Finally we demonstrate that a three-month low-dose statin-rHDL treatment regimen inhibits plaque inflammation progression, while a one-week high-dose regimen markedly decreases inflammation in advanced atherosclerotic plaques. Statin-rHDL represents a novel potent atherosclerosis nanotherapy that directly affects plaque inflammation.


Molecular Pharmaceutics | 2010

Multimodal clinical imaging to longitudinally assess a nanomedical anti-inflammatory treatment in experimental atherosclerosis.

Mark E. Lobatto; Zahi A. Fayad; Stephane Silvera; Esad Vucic; Claudia Calcagno; Venkatesh Mani; Stephen D. Dickson; Klaas Nicolay; Manuela Banciu; Raymond M. Schiffelers; Josbert M. Metselaar; Louis van Bloois; Hai-Shan Wu; John T. Fallon; James H.F. Rudd; Valentin Fuster; Edward A. Fisher; Gert Storm; Willem J. M. Mulder

Atherosclerosis is an inflammatory disease causing great morbidity and mortality in the Western world. To increase the anti-inflammatory action and decrease adverse effects of glucocorticoids (PLP), a nanomedicinal liposomal formulation of this drug (L-PLP) was developed and intravenously applied at a dose of 15 mg/kg PLP to a rabbit model of atherosclerosis. Since atherosclerosis is a systemic disease, emerging imaging modalities for assessing atherosclerotic plaque are being developed. (18)F-Fluoro-deoxy-glucose positron emission tomography and dynamic contrast enhanced magnetic resonance imaging, methods commonly used in oncology, were applied to longitudinally assess therapeutic efficacy. Significant anti-inflammatory effects were observed as early as 2 days that lasted up to at least 7 days after administration of a single dose of L-PLP. No significant changes were found for the free PLP treated animals. These findings were corroborated by immunohistochemical analysis of macrophage density in the vessel wall. In conclusion, this study evaluates a powerful two-pronged strategy for efficient treatment of atherosclerosis that includes nanomedical therapy of atherosclerotic plaques and the application of noninvasive and clinically approved imaging techniques to monitor delivery and therapeutic responses. Importantly, we demonstrate unprecedented rapid anti-inflammatory effects in atherosclerotic lesions after the nanomedical therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis

YongTae Kim; Mark E. Lobatto; Tomohiro Kawahara; Bomy Lee Chung; Aneta J. Mieszawska; Brenda L. Sanchez-Gaytan; Francois Fay; Max L. Senders; Claudia Calcagno; Jacob R. Becraft; May Tun Saung; Ronald E. Gordon; Erik S.G. Stroes; Mingming Ma; Omid C. Farokhzad; Zahi A. Fayad; Willem J. M. Mulder; Robert Langer

Significance This study shows that an endothelialized microfluidic chip with controllable permeability can serve as a model for nanoparticle translocation across the permeable endothelium. Integration of this in vitro model and an in vivo rabbit model revealed that the extravasation of nanoparticles across the endothelium in atherosclerotic plaques depends on microvascular permeability. This approach represents a unique method for the assessment of nanoparticle behavior across the atherosclerotic endothelium, and may also serve as a valuable tool to study nanomedicine accumulation in a variety of other diseases. Therapeutic and diagnostic nanomaterials are being intensely studied for several diseases, including cancer and atherosclerosis. However, the exact mechanism by which nanomedicines accumulate at targeted sites remains a topic of investigation, especially in the context of atherosclerotic disease. Models to accurately predict transvascular permeation of nanomedicines are needed to aid in design optimization. Here we show that an endothelialized microchip with controllable permeability can be used to probe nanoparticle translocation across an endothelial cell layer. To validate our in vitro model, we studied nanoparticle translocation in an in vivo rabbit model of atherosclerosis using a variety of preclinical and clinical imaging methods. Our results reveal that the translocation of lipid–polymer hybrid nanoparticles across the atherosclerotic endothelium is dependent on microvascular permeability. These results were mimicked with our microfluidic chip, demonstrating the potential utility of the model system.


Science Advances | 2015

Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation.

Jun Tang; Mark E. Lobatto; Laurien Hassing; Susanne E. M. van der Staay; Sarian M. van Rijs; Claudia Calcagno; Mounia S. Braza; Samantha Baxter; Francois Fay; Brenda L. Sanchez-Gaytan; Raphaël Duivenvoorden; Hendrik B. Sager; Yaritzy M Astudillo; Wei Sin Leong; Gert Storm; Carlos Pérez-Medina; Thomas Reiner; David P. Cormode; Gustav J. Strijkers; Erik S.G. Stroes; Filip K. Swirski; Matthias Nahrendorf; Edward A. Fisher; Zahi A. Fayad; Willem J. M. Mulder

Nanoparticle-based delivery of simvastatin inhibits plaque macrophage proliferation in apolipoprotein E–deficient mice. Inflammation drives atherosclerotic plaque progression and rupture, and is a compelling therapeutic target. Consequently, attenuating inflammation by reducing local macrophage accumulation is an appealing approach. This can potentially be accomplished by either blocking blood monocyte recruitment to the plaque or increasing macrophage apoptosis and emigration. Because macrophage proliferation was recently shown to dominate macrophage accumulation in advanced plaques, locally inhibiting macrophage proliferation may reduce plaque inflammation and produce long-term therapeutic benefits. To test this hypothesis, we used nanoparticle-based delivery of simvastatin to inhibit plaque macrophage proliferation in apolipoprotein E–deficient mice (Apoe−/−) with advanced atherosclerotic plaques. This resulted in the rapid reduction of plaque inflammation and favorable phenotype remodeling. We then combined this short-term nanoparticle intervention with an 8-week oral statin treatment, and this regimen rapidly reduced and continuously suppressed plaque inflammation. Our results demonstrate that pharmacologically inhibiting local macrophage proliferation can effectively treat inflammation in atherosclerosis.


Journal of the American College of Cardiology | 2011

In Vivo Characterization of a New Abdominal Aortic Aneurysm Mouse Model With Conventional and Molecular Magnetic Resonance Imaging

Ahmed Klink; Joeri Heynens; Beatriz Herranz; Mark E. Lobatto; Teresa Arias; Honorius M. H. F. Sanders; Gustav J. Strijkers; Maarten Merkx; Klaas Nicolay; Valentin Fuster; Alain Tedgui; Ziad Mallat; Willem J. M. Mulder; Zahi A. Fayad

OBJECTIVES The goal of this study was to use noninvasive conventional and molecular magnetic resonance imaging (MRI) to detect and characterize abdominal aortic aneurysms (AAAs) in vivo. BACKGROUND Collagen is an essential constituent of aneurysms. Noninvasive MRI of collagen may represent an opportunity to help detect and better characterize AAAs and initiate intervention. METHODS We used an AAA C57BL/6 mouse model in which a combination of angiotensin II infusion and transforming growth factor-β neutralization results in AAA formation with incidence of aortic rupture. High-resolution, multisequence MRI was performed to characterize the temporal progression of an AAA. To allow molecular MRI of collagen, paramagnetic/fluorescent micellar nanoparticles functionalized with a collagen-binding protein (CNA-35) were intravenously administered. In vivo imaging results were corroborated with immunohistochemistry and confocal fluorescence microscopy. RESULTS High-resolution, multisequence MRI allowed the visualization of the primary fibrotic response in the aortic wall. As the aneurysm progressed, the formation of a secondary channel or dissection was detected. Further analysis revealed a dramatic increase of the aortic diameter. Injection of CNA-35 micelles resulted in a significantly higher magnetic resonance signal enhancement in the aneurysmal wall compared with nonspecific micelles. Histological studies revealed the presence of collagen in regions of magnetic resonance signal enhancement, and confocal microscopy proved the precise co-localization of CNA-35 micelles with type I collagen. In addition, in a proof-of-concept experiment, we reported the potential of CNA-35 micelles to discriminate between stable AAA lesions and aneurysms that were likely to rapidly progress or rupture. CONCLUSIONS High-resolution, multisequence MRI allowed longitudinal monitoring of AAA progression while the presence of collagen was visualized by nanoparticle-enhanced MRI.


Nature Reviews Cardiology | 2008

Multimodality nanotracers for cardiovascular applications

Willem J. M. Mulder; David P. Cormode; Sjoerd Hak; Mark E. Lobatto; Stephane Silvera; Zahi A. Fayad

Targeted imaging and therapeutics is becoming a field of prime importance in the study and treatment of cardiovascular disease; it promises to enable early diagnosis, promote improved understanding of pathology, and offer a way to improve therapeutic efficacy. Agents, particularly for cardiovascular disease, have been reported to permit the in vivo imaging, by multiple modalities, of macrophages, vascular targets such as vascular cell adhesion molecule 1, and markers for angiogenesis such as αvβ3 integrin. In this Article, we first discuss the general concept of multimodality nanoparticles and then focus in greater depth on their clinical application for molecular imaging and therapy. Lastly, several examples of cardiovascular applications are discussed, including combined imaging and therapy approaches.


Journal of the American College of Cardiology | 2014

Nonpharmacological Lipoprotein Apheresis Reduces Arterial Inflammation in Familial Hypercholesterolemia

Diederik F. van Wijk; Barbara Sjouke; Amparo L. Figueroa; Hamed Emami; Fleur M. van der Valk; Megan H. MacNabb; Linda C. Hemphill; Dominik M. Schulte; Marion G. Koopman; Mark E. Lobatto; Hein J. Verberne; Zahi A. Fayad; John J. P. Kastelein; Willem J. M. Mulder; G. Kees Hovingh; Ahmed Tawakol; Erik S.G. Stroes

BACKGROUND Patients with familial hypercholesterolemia (FH) are characterized by elevated atherogenic lipoprotein particles, predominantly low-density lipoprotein cholesterol (LDL-C), which is associated with accelerated atherogenesis and increased cardiovascular risk. OBJECTIVES This study used (18)F-fluorodeoxyglucose positron emission tomography ((18)FDG-PET) to investigate whether arterial inflammation is higher in patients with FH and, moreover, whether lipoprotein apheresis attenuates arterial wall inflammation in FH patients. METHODS In total, 38 subjects were recruited: 24 FH patients and 14 normolipidemic controls. All subjects underwent FDG-PET imaging at baseline. Twelve FH patients who met the criteria for lipoprotein apheresis underwent apheresis procedures followed by a second FDG-PET imaging 3 days (range 1 to 4 days) after apheresis. Subsequently, the target-to-background ratio (TBR) of FDG uptake within the arterial wall was assessed. RESULTS In FH patients, the mean arterial TBR was higher compared with healthy controls (2.12 ± 0.27 vs. 1.92 ± 0.19; p = 0.03). A significant correlation was observed between baseline arterial TBR and LDL-C (R = 0.37; p = 0.03) that remained significant after adjusting for statin use (β = 0.001; p = 0.02) and atherosclerosis risk factors (β = 0.001; p = 0.03). LDL-C levels were significantly reduced after lipoprotein apheresis (284 ± 118 mg/dl vs. 127 ± 50 mg/dl; p < 0.001). There was a significant reduction of arterial inflammation after lipoprotein apheresis (TBR: 2.05 ± 0.31 vs. 1.91 ± 0.33; p < 0.02). CONCLUSIONS The arterial wall of FH patients is characterized by increased inflammation, which is markedly reduced after lipoprotein apheresis. This lends support to a causal role of apoprotein B-containing lipoproteins in arterial wall inflammation and supports the concept that lipoprotein-lowering therapies may impart anti-inflammatory effects by reducing atherogenic lipoproteins.


Bioconjugate Chemistry | 2015

HDL-Mimetic PLGA Nanoparticle To Target Atherosclerosis Plaque Macrophages

Brenda L. Sanchez-Gaytan; Francois Fay; Mark E. Lobatto; Jun Tang; Mireille Ouimet; YongTae Kim; Susanne E. M. van der Staay; Sarian M. van Rijs; Bram Priem; Liangfang Zhang; Edward A. Fisher; Kathryn J. Moore; Robert Langer; Zahi A. Fayad; Willem J. M. Mulder

High-density lipoprotein (HDL) is a natural nanoparticle that exhibits an intrinsic affinity for atherosclerotic plaque macrophages. Its natural targeting capability as well as the option to incorporate lipophilic payloads, e.g., imaging or therapeutic components, in both the hydrophobic core and the phospholipid corona make the HDL platform an attractive nanocarrier. To realize controlled release properties, we developed a hybrid polymer/HDL nanoparticle composed of a lipid/apolipoprotein coating that encapsulates a poly(lactic-co-glycolic acid) (PLGA) core. This novel HDL-like nanoparticle (PLGA-HDL) displayed natural HDL characteristics, including preferential uptake by macrophages and a good cholesterol efflux capacity, combined with a typical PLGA nanoparticle slow release profile. In vivo studies carried out with an ApoE knockout mouse model of atherosclerosis showed clear accumulation of PLGA-HDL nanoparticles in atherosclerotic plaques, which colocalized with plaque macrophages. This biomimetic platform integrates the targeting capacity of HDL biomimetic nanoparticles with the characteristic versatility of PLGA-based nanocarriers.

Collaboration


Dive into the Mark E. Lobatto's collaboration.

Top Co-Authors

Avatar

Willem J. M. Mulder

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Zahi A. Fayad

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Claudia Calcagno

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valentin Fuster

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Jun Tang

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

David P. Cormode

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Francois Fay

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Philip M. Robson

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge