Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Estelle is active.

Publication


Featured researches published by Mark Estelle.


Nature | 2005

The F-box protein TIR1 is an auxin receptor

Nihal Dharmasiri; Sunethra Dharmasiri; Mark Estelle

The plant hormone auxin regulates diverse aspects of plant growth and development. Recent studies indicate that auxin acts by promoting the degradation of the Aux/IAA transcriptional repressors through the action of the ubiquitin protein ligase SCFTIR1. The nature of the signalling cascade that leads to this effect is not known. However, recent studies indicate that the auxin receptor and other signalling components involved in this response are soluble factors. Using an in vitro pull-down assay, we demonstrate that the interaction between transport inhibitor response 1 (TIR1) and Aux/IAA proteins does not require stable modification of either protein. Instead auxin promotes the Aux/IAA–SCFTIR1 interaction by binding directly to SCFTIR1. We further show that the loss of TIR1 and three related F-box proteins eliminates saturable auxin binding in plant extracts. Finally, TIR1 synthesized in insect cells binds Aux/IAA proteins in an auxin-dependent manner. Together, these results indicate that TIR1 is an auxin receptor that mediates Aux/IAA degradation and auxin-regulated transcription.


Science | 2006

A plant miRNA contributes to antibacterial resistance by repressing auxin signaling.

Lionel Navarro; Patrice Dunoyer; Florence Jay; Benedict Arnold; Nihal Dharmasiri; Mark Estelle; Olivier Voinnet; Jonathan D. G. Jones

Plants and animals activate defenses after perceiving pathogen-associated molecular patterns (PAMPs) such as bacterial flagellin. In Arabidopsis, perception of flagellin increases resistance to the bacterium Pseudomonas syringae, although the molecular mechanisms involved remain elusive. Here, we show that a flagellin-derived peptide induces a plant microRNA (miRNA) that negatively regulates messenger RNAs for the F-box auxin receptors TIR1, AFB2, and AFB3. Repression of auxin signaling restricts P. syringae growth, implicating auxin in disease susceptibility and miRNA-mediated suppression of auxin signaling in resistance.


Nature | 2001

Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins

William M. Gray; Stefan Kepinski; Dean Rouse; Ottoline Leyser; Mark Estelle

The plant hormone auxin is central in many aspects of plant development. Previous studies have implicated the ubiquitin-ligase SCFTIR1 and the AUX/IAA proteins in auxin response. Dominant mutations in several AUX/IAA genes confer pleiotropic auxin-related phenotypes, whereas recessive mutations affecting the function of SCFTIR1 decrease auxin response. Here we show that SCFTIR1 is required for AUX/IAA degradation. We demonstrate that SCFTIR1 interacts with AXR2/IAA7 and AXR3/IAA17, and that domain II of these proteins is necessary and sufficient for this interaction. Further, auxin stimulates binding of SCFTIR1 to the AUX/IAA proteins, and their degradation. Because domain II is conserved in nearly all AUX/IAA proteins in Arabidopsis, we propose that auxin promotes the degradation of this large family of transcriptional regulators, leading to diverse downstream effects.


Nature | 2007

Mechanism of auxin perception by the TIR1 ubiquitin ligase

Xu Tan; Luz Irina Calderon-Villalobos; Michal Sharon; Changxue Zheng; Carol V. Robinson; Mark Estelle; Ning Zheng

Auxin is a pivotal plant hormone that controls many aspects of plant growth and development. Perceived by a small family of F-box proteins including transport inhibitor response 1 (TIR1), auxin regulates gene expression by promoting SCF ubiquitin-ligase-catalysed degradation of the Aux/IAA transcription repressors, but how the TIR1 F-box protein senses and becomes activated by auxin remains unclear. Here we present the crystal structures of the Arabidopsis TIR1–ASK1 complex, free and in complexes with three different auxin compounds and an Aux/IAA substrate peptide. These structures show that the leucine-rich repeat domain of TIR1 contains an unexpected inositol hexakisphosphate co-factor and recognizes auxin and the Aux/IAA polypeptide substrate through a single surface pocket. Anchored to the base of the TIR1 pocket, auxin binds to a partially promiscuous site, which can also accommodate various auxin analogues. Docked on top of auxin, the Aux/IAA substrate peptide occupies the rest of the TIR1 pocket and completely encloses the hormone-binding site. By filling in a hydrophobic cavity at the protein interface, auxin enhances the TIR1–substrate interactions by acting as a ‘molecular glue’. Our results establish the first structural model of a plant hormone receptor.


Science | 1988

Insensitivity to Ethylene Conferred by a Dominant Mutation in Arabidopsis thaliana

Anthony B. Bleecker; Mark Estelle; Chris Somerville; Hans Kende

Ethylene influences a number of developmental processes and responses to stress in higher plants. The molecular basis for the action of ethylene was investigated in mutants of Arabidopsis thaliana that have altered responses to ethylene. One mutant line, which has a dominant mutation at a locus designated etr, lacks a number of responses to ethylene that are present in the wild-type plant. These include inhibition of cell elongation, promotion of seed germination, enhancement of peroxidase activity, acceleration of leaf senescence, and feedback suppression of ethylene synthesis by ethylene. These diverse responses, which occur in different tissues of Arabidopsis, appear to share some common element in their transduction pathways—for example, a single receptor for ethylene. Results of ethylene binding experiments in vivo indicate that this receptor may be affected by the etr mutation.


The Plant Cell | 1990

Growth and development of the axr1 mutants of Arabidopsis.

Cynthia Lincoln; James H. Britton; Mark Estelle

We have recovered eight new auxin-resistant lines of Arabidopsis that carry mutations in the AXR1 gene. These eight lines, together with the 12 lines described in a previous report, define at least five different axr1 alleles. All of the mutant lines have a similar phenotype. Defects include decreases in plant height, root gravitropism, hypocotyl elongation, and fertility. Mutant line axr1-3 is less resistant to auxin than the other mutant lines and has less severe morphological abnormalities. This correlation suggests that the morphological defects are a consequence of a defect in auxin action. To determine whether the altered morphology of mutant plants is associated with changes in cell size or tissue organization, tissue sections were examined using scanning electron microscopy. No clear differences in cell size were observed between wild-type and mutant tissues. However, the vascular bundles of mutant stems were found to be less well differentiated than those in wild-type stems. The auxin sensitivity of rosette-stage plants was determined by spraying plants with auxin solutions. Mutant rosettes were found to be significantly less sensitive to exogenously applied auxin than wild-type rosettes, indicating that the AXR1 gene functions in aerial portions of the plant. Our studies suggest that the AXR1 gene is required for auxin action in most, if not all, tissues of the plant and plays an important role in plant development. Linkage studies indicate that the gene is located on chromosome 1 approximately 2 centiMorgans from the closest restriction fragment length polymorphism.


Nature | 2009

Recent advances and emerging trends in plant hormone signalling

Aaron Santner; Mark Estelle

Plant growth and development is regulated by a structurally unrelated collection of small molecules called plant hormones. During the last 15 years the number of known plant hormones has grown from five to at least ten. Furthermore, many of the proteins involved in plant hormone signalling pathways have been identified, including receptors for many of the major hormones. Strikingly, the ubiquitin–proteasome pathway plays a central part in most hormone-signalling pathways. In addition, recent studies confirm that hormone signalling is integrated at several levels during plant growth and development.


Molecular Genetics and Genomics | 1987

Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology

Mark Estelle; Chris Somerville

SummaryMutant lines of Arabidopsis thaliana resistant to the artificial auxin 2,4-dichloro phenoxyacetic acid (2,4-D) were isolated by screening for growth of seedlings in the presence of toxic levels of 2,4-D. Genetic analysis of these resistant lines indicated that 2,4-D resistance is due to a recessive mutation at a locus we have designated Axr-1. Mutant seedlings were resistant to approximately 50-fold higher concentrations of 2,4-D than wild-type and were also resistant to 8-fold higher concentrations of indole-3-acetic acid (IAA) than wild-type. Labelling studies with (14C)2,4-D suggest that resistance was not due to changes in uptake or metabolism of 2,4-D. In addition to auxin resistance the mutants have a distinct morphological phenotype including alterations of the roots, leaves, and flowers. Genetic evidence indicates that both auxin resistance and the morphological changes are due to the same mutation. Because of the pleiotropic morphological effects of these mutations the Axr-1 gene may code for a function involved in auxin action in all tissues of the plant.


Annual Review of Genetics | 2009

Mechanism of Auxin-Regulated Gene Expression in Plants

Elisabeth J. Chapman; Mark Estelle

Plant hormones control most aspects of the plant life cycle by regulating genome expression. Expression of auxin-responsive genes involves interactions among auxin-responsive DNA sequence elements, transcription factors and trans-acting transcriptional repressors. Transcriptional output from these auxin signaling complexes is regulated by proteasome-mediated degradation that is triggered by interaction with auxin receptor-E3 ubiquitin ligases such SCF(TIR1). Auxin signaling components are conserved throughout land plant evolution and have proliferated and specialized to control specific developmental processes.


Molecular Genetics and Genomics | 1990

A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid

A. K. Wilson; F. B. Pickett; J. C. Turner; Mark Estelle

SummaryWe have screened a large population of M2 seeds ofArabidopsis thaliana for plants which are resistant to exogenously applied indole-acetic acid (IAA). One of the resistant lines identified in this screen carries a dominant mutation which we have namedaxr2. Linkage analysis indicates that theaxr2 gene lies on chromosome 3. Plants carrying theaxr2 mutation are severe dwarfs and display defects in growth orientation of both the shoot and root suggesting that the mutation affects some aspect of gravitropic growth. In addition, the roots ofaxr2 plants lack root hairs. Growth inhibition experiments indicate that the roots ofaxr2 plants are resistant to ethylene and abscisic acid as well as auxin.

Collaboration


Dive into the Mark Estelle's collaboration.

Top Co-Authors

Avatar

Sunethra Dharmasiri

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nihal Dharmasiri

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Geraint Parry

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Yi Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

Aaron Santner

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Hanjo Hellmann

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Hong Yu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge