Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark F. Seifert is active.

Publication


Featured researches published by Mark F. Seifert.


Journal of Bone and Mineral Research | 1999

Dietary Conjugated Linoleic Acids Alter Serum IGF-I and IGF Binding Protein Concentrations and Reduce Bone Formation in Rats Fed (n-6) or (n-3) Fatty Acids†

Yong Li; Mark F. Seifert; Denise M. Ney; Mike Grahn; A.L. Grant; Kenneth G.D. Allen; Bruce A. Watkins

A study was designed to examine the effects of dietary conjugated linoleic acid (CLA) on serum concentrations of insulin‐like growth factor‐I (IGF‐I) and IGF binding proteins (IGFBP) and the relationship of these factors to bone metabolism. Weanling male rats were fed AIN‐93G diet containing 70 g/kg of added fat for 42 days. Treatments included 0 g/kg or 10 g/kg of CLA and soybean oil (SBO) or menhaden oil + safflower oil (MSO) following a 2 × 2 factorial design. Serum IGFBP was influenced by dietary polyunsaturated fatty acid (PUFA) type ((n‐6) and (n‐3)) and CLA (p = 0.01 for 38–43 kDa bands corresponding to IGFBP‐3). CLA increased IGFBP level in rats fed SBO (p = 0.05) but reduced it in those fed MSO (p = 0.01). Rats fed MSO had the highest serum IGFBP‐3 level. Both (n‐3) fatty acids and CLA lowered ex vivo prostaglandin E2 production in bone organ culture. In tibia, rats given CLA had reduced mineral apposition rate (3.69 vs. 2.79 μm/day) and bone formation rate (BFR) (0.96 vs. 0.65 μm3/μm2/day); however, the BFR tended to be higher with MSO. Dietary lipid treatments did not affect serum intact osteocalcin or bone mineral content. These results showed that dietary PUFA type and CLA modulate local factors that regulate bone metabolism.


Calcified Tissue International | 1995

Vitamin E stimulates trabecular bone formation and alters epiphyseal cartilage morphometry.

Hui Xu; Bruce A. Watkins; Mark F. Seifert

The effects of dietary vitamin E (VIT E) and lipids on tissue lipid peroxidation and fatty acid composition, epiphyseal growth plate cartilage development, and trabecular bone formation were evaluated in chicks. A 2×2 factorial design was followed using two levels (30 and 90 IU/kg of diet) of dl-α-tocopheryl acetate and two different dietary lipids. The basal semipurified diet contained one of the following lipid treatments: anhydrous butter oil (40 g/kg)+ soybean oil (60 g/kg), [BSO], or soybean oil (100 g/kg), [SBO]. After 14 days of feeding, the level of α-tocopherol in plasma was higher and thiobarbituric acid reactive substances (TBARS) were less in plasma and liver of chicks supplemented with 90 IU of VIT E compared with those given 30 IU of VIT E. Body weights and tibiotarsal bone lengths were not affected by the dietary treatments Saturated fatty acids (14:0, 15:0, 16:0, 17:0, and 18:0) were increased in tibiotarsal bone of chicks fed the BSO diet. In contrast, total polyunsaturated fatty acids and the ratio of unsaturated fatty acids/saturated fatty acids were higher in plasma of chicks fed SBO compared with the values from chicks fed BSO. The thickness of the entire growth plate cartilage and the lower hypertrophic chondrocyte zone was significantly greater in chicks fed 90 IU/kg of VIT E. Kinetic parameters on bone histomorphometry indicated that mineral apposition rate was higher in chicks fed 90 IU/kg of VIT E. The interaction effect between the VIT E and BSO treatments led to the highest trabecular bone formation rate among the groups. These data suggest that VIT E protects against cellular lipid peroxidation in cartilage to sustain normal bone growth and modeling.


Journal of The American College of Nutrition | 2000

Conjugated Linoleic Acid and Bone Biology

Bruce A. Watkins; Mark F. Seifert

Osteoporosis, osteoarthritis and inflammatory joint disease afflict millions of people worldwide. Inflammatory cytokines inhibit chondrocyte proliferation and induce cartilage degradation for which part of the response is mediated by PGE2. Excess production of PGE2 is linked to osteoporosis and arthritis and is associated with bone and proteoglycan loss. PGE2 also influences the IGF-I/IGFBP axis to facilitate bone and cartilage formation. Recent investigations with growing rats given butter fat and supplements of CLA demonstrated an increased rate of bone formation and reduced ex vivo bone PGE2 production, respectively. Furthermore, the supplements of CLA isomers resulted in their enrichment in lipids of various bone compartments of animals. The effects of CLA on bone biology in rats (IGF action and cytokines) appear to be dependent on the level of n-6 and n-3 fatty acids in the diet; however, these studies generally showed that CLA decreased ex vivo bone PGE2 production and in osteoblast-like cultures. Anti-inflammatory diets, including nutraceutical applications of CLA, may be beneficial in moderating cyclooygenase 2 (COX-2) activity or expression (influencing PGE2 biosynthesis) and might help to reduce rheumatoid arthritis (secondary osteoporosis). This review summarizes findings of CLA on bone modeling in rats and effects on cellular functions of osteoblasts and chondrocytes. These experiments indicate that CLA isomers possess anti-inflammatory activity in bone by moderating prostanoid formation.


Journal of Bone and Mineral Research | 1999

Marked Osteoblastopenia and Reduced Bone Formation in a Model of Multiple Myeloma Bone Disease in Severe Combined Immunodeficiency Mice

Henrik Hjorth-Hansen; Mark F. Seifert; Harald Aarset; Agnes Östlie; Anders Sundan; Anders Waage

We report on an in vivo model of human myeloma producing bone disease in irradiated severe combined immunodeficiency disease mice using the human myeloma cell line JJN‐3 and its subline JJN‐3 T1. The cell lines are not Epstein‐Barr virus transformed and produce large amounts of hepatocyte growth factor (HGF). Mice had radiological signs of osteolysis and mild hypercalcemia. Xenografted cells were predominantly found in bone marrow and brown adipose tissue, but also in meninges and liver. Take was documented by histopathological examination, immunophenotyping of cultured bone marrow, and radiography. HGF was detected in serum and bone marrow plasma. Disease generally occurred within 45 days of intravenous inoculation and was signaled by paraparesis or signs of intracranial neoplasia. More than 90% of the mice had take of xenografts. The subline JJN‐3 T1 gave more reproducible bone marrow take than the native cell line. Bone histomorphometric examination revealed a 99% reduction in osteoblast counts and a 33% reduction in osteoclast counts in areas of tumor growth. Bone formation rates were reduced by 53%. The results suggest that osteoblastopenia and reduced bone formation is of importance for the occurrence of osteolytic lesions in this model.


Journal of Bone and Mineral Research | 2011

The pathophysiology of early‐stage chronic kidney disease–mineral bone disorder (CKD‐MBD) and response to phosphate binders in the rat

Sharon M. Moe; J Scott Radcliffe; Kenneth E. White; Vincent H. Gattone; Mark F. Seifert; Xianming Chen; Blaire Aldridge; Neal X. Chen

Chronic kidney disease–mineral bone disorder (CKD‐MBD) is a systemic disorder that describes the complex bone and mineral abnormalities that occur in CKD. To understand the pathophysiology of CKD‐MBD and determine whether the early use of phosphate binders would alter this physiology, we used a naturally occurring, slowly progressive model of CKD‐MBD, the Cy/+ rat. Male Cy/+ rats were compared with their normal littermates at 20 weeks of age after 1 week of no phosphate binder, calcium carbonate, or sevelamer carbonate. The Cy/+ rat had renal function that was 50% of that of normal littermates, elevated parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), decreased 1,25‐dihydroxyvitamin D3 [1,25(OH)2D3] levels, but normal calcium and phosphorus levels. There was a significant positive correlation of blood FGF23 and phosphorus levels and blood FGF23 and urine phosphorus levels. There was an inverse correlation between FGF23 and calcium levels. mRNA from the kidney demonstrated 50% reduction in klotho and Npt2a expression but no difference in CYP27B1. In the intestine, CKD animals had reduced active phosphate absorption in the jejunum using modified Ussing chambers and a reduction in Npt2b expression throughout the small intestine compared with normal littermates. In bone, mRNA expression of FGF23 was reduced (driven by lowering with phosphate binders), and TRAP expression was increased in CKD. By histology, there was increased osteoclast activity and number, and there were reductions in some measures of femoral neck mechanical strength. One week of phosphate binders reduced intestinal phosphate flux, serum phosphorus levels, and urinary phosphate excretion. These results demonstrate marked abnormalities in kidney, intestine, and bone in early CKD‐MBD. While phosphate binders were effective in lowering urine phosphorus, they had little effect on end organs after 1 week of administration.


Clinical Orthopaedics and Related Research | 1993

Experimental studies of osteopetrosis in laboratory animals

Mark F. Seifert; Steven N. Popoff; Mary Jackson; Carole A. MacKay; Matthew J. Cielinski; Sandy C. Marks

Osteopetrosis is a metabolic bone disease characterized by a systemic increase in skeletal mass. It results from a defect in the production or function of osteoclasts and is inherited in nine genetically distinct osteopetrotic animal mutations and man. Studies of these mutations have revealed that osteopetrosis is a complex, heterogeneous disorder in its expression, etiology, and response to treatment by bone marrow transplantation or by hormone/growth factor therapy. These animal mutations have been valuable tools for probing the pathogenesis and treatment of osteopetrosis, and information obtained from these studies has been used clinically for the treatment of humans with osteopetrosis. In addition, studies of these mutations have contributed significantly to understanding normal bone cell biology, including the origin of the osteoclast and the significance of colony-stimulating factor-1 in osteoclast development. The resistance of some of these mutations to cure by stem cell transplantation and hormone therapy, coupled with similar observations and experiences in the human condition, indicates that these animal mutations will continue to serve important roles in the development of alternative therapies to treat resistant forms of the disease. These studies are bound to improve the understanding of normal bone biology by providing additional insights into the regulation of osteoclasts by osteoblasts and their products or by other elements of the skeletal microenvironment.


British Journal of Nutrition | 2010

Bone mineral content is positively correlated to n-3 fatty acids in the femur of growing rats.

Yong Li; Mark F. Seifert; Sun-Young Lim; Norman Salem; Bruce A. Watkins

The present study was conducted to determine whether provision of preformed dietary docosapentaenoic acid (DPAn-6) can replace DHA for normal long bone growth as assessed by dual-energy X-ray absorptiometry for mineral content (BMC). A newly modified artificial rearing method was employed to generate n-3 fatty acid-deficient rats. Except the dam-reared (DR; 3.1 % alpha-linolenic acid) group, newborn pups were separated from their mothers at age 2 d and given artificial rat milk containing linoleic acid (LA), or LA supplemented with 1 % DHA (22 : 6n-3; DHA), 1 % DPAn-6 (DPA), or 1 % DHA plus 0.4 % DPAn-6 (DHA/DPA). The rats were later weaned onto similar pelleted diets. At adulthood, the rats were euthanised and bones (femur, tibia, and lumbar vertebrae) collected for tissue fatty acid analysis and bone mineral density (BMD) determination. The analyses showed that long bones such as femur and tibia in DPAn-6-treated rats contained higher DPAn-6 content and generally had the lowest BMC and BMD values. Hence, DPAn-6 did not replace DHA for normal bone growth and maximal BMC in femur, indicating an indispensible role of DHA in bone health. In conclusion, DHA accumulates in the osteoblast-rich and nerve-abundant periosteum of femur; DHA but not EPA appears to be a vital constituent of marrow and periosteum of healthy modelling bone; and both DHA and total n-3 PUFA strongly correlate to BMC.


Journal of The American College of Nutrition | 2001

Nutraceutical Fatty Acids as Biochemical and Molecular Modulators of Skeletal Biology

Bruce A. Watkins; Yong Li; Mark F. Seifert

Several systemic hormones and localized growth factors coordinate events of bone formation and resorption to support bone growth in the young and maintain bone mineral content in the adult. Some of the more important factors produced in the bone microenvironment that impact skeletal biology include prostaglandins, cytokines, and insulin-like growth factors. Dietary fat sources that exert potent biological effects on the skeletal tissues belong to the omega-6 and omega-3 families of essential fatty acids. Specific long-chain polyunsaturated fatty acids (PUFA) belonging to these families are substrates for prostanoids that influence the differentiation and activity of cells in bone and cartilage tissues. These PUFA appear to alter prostanoid formation, cell-to-cell signaling processes, and impact transcription factors in vivo. Hence, these biologically active PUFA can be called nutraceutical fatty acids. This review highlights the role of nutraceutical fatty acids on bone metabolism and joint disease. The recent discovery of transcription factors controlling osteoblast function, and soluble proteins directing osteoclastogenesis and osteoblastogenesis offer new research opportunities for studying nutraceutical fatty acids in skeletal biology.


Journal of The American Society of Nephrology | 2009

Calcimimetic Inhibits Late-Stage Cyst Growth in ADPKD

Vincent H. Gattone; Neal X. Chen; Rachel M. Sinders; Mark F. Seifert; Danxia Duan; David Martin; Charles Henley; Sharon M. Moe

In polycystic kidney disease (PKD), genetic mutations in polycystin 1 and 2 lead to defective intracellular trafficking of calcium, thereby decreasing intracellular calcium and altering cAMP signaling to favor proliferation. We hypothesized that calcimimetics, allosteric modulators of the calcium-sensing receptor, would reduce cyst growth by increasing intracellular calcium. We randomly assigned 20-wk-old male rats with a form of autosomal dominant PKD (heterozygote Cy/+) to one of four groups for 14 to 18 wk of treatment: (group 1) no treatment; (group 2) calcimimetic R-568 formulated in the diet; (group 3) R-568 plus calcium-supplemented drinking water (R-568 plus Ca); or (group 4) Ca-supplemented drinking water with a normal diet (Ca). Severity of PKD did not progress in any of the three treatment groups between 34 and 38 wk. Compared with no treatment, cyst growth was unaffected at 34 wk by all treatments, but cyst volume and fibrosis were lower at 38 wk, with both R-568-treated groups demonstrating a greater reduction than calcium alone. Between 34 and 38 wk, the total kidney weight increased by 78% in the control group (P < 0.001) and by 19% in the Ca group (P < 0.01), but did not increase in the R-568 or R-568 plus Ca groups, suggesting inhibition of disease progression despite equivalent suppression of parathyroid hormone. In summary, treatment of hyperparathyroidism halts late-stage progression of rodent cystic kidney disease. The benefit of R-568 alone suggests calcium-sensing receptor modulation may have additional inhibitory effects on late-stage cyst growth resulting from a direct modulation of intracellular calcium.


Nephrology Dialysis Transplantation | 2009

R-568 reduces ectopic calcification in a rat model of chronic kidney disease-mineral bone disorder (CKD-MBD)

Sharon M. Moe; Mark F. Seifert; Neal X. Chen; Rachel M. Sinders; Xianming Chen; Dana Duan; Charles Henley; Dave Martin; Vincent H. Gattone

BACKGROUND Chronic kidney disease-mineral bone disorder (CKD-MBD), a newly defined disorder in patients with CKD, describes the interacting triad of (1) biochemical abnormalities of calcium, phosphorus and parathyroid hormone (PTH), (2) extraskeletal calcification and (3) abnormal bone. METHODS We studied the effects of the calcimimetic R-568, R-568 with calcium (R-568 + Ca) or calcium (Ca) alone compared with control CKD rats on this triad in the Cy/+ male rat, a model of progressive CKD that spontaneously develops CKD-MBD on a normal phosphorus diet. Animals were treated for either 14 or 18 weeks beginning at 20 weeks of age (34-week and 38-week animals, respectively). RESULTS The results demonstrated similar efficacy of R-568, R-568 + Ca and Ca in lowering PTH levels. R-568 alone lowered plasma calcium compared to control over time, but increased phosphorus compared to control early in the course of the disease, but not at 38 weeks. Animals treated with Ca alone or R-568 + Ca had lower phosphorus levels; the Ca alone group had elevated Ca levels. Bone volume improved in the calcium-treated groups. In contrast, arterial and cardiac calcification worsened by most assessments in the R-568 + Ca and Ca alone treated animals compared with R-568 alone whereas R-568 alone treatment showed beneficial effects on most sites of extraskeletal calcification. CONCLUSION Thus, R-568, with or without Ca, improved the biochemical abnormalities of hyperparathyroidism but with higher and lower calcium levels, respectively, compared with controls. However, R-568 + Ca had more dramatic improvement in bone volume, but more extraskeletal calcification than R-568 alone. This complexity demonstrates that treatment of one component of CKD-MBD may lead to undesirable effects on other components.

Collaboration


Dive into the Mark F. Seifert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandy C. Marks

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carole A. MacKay

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge