Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Featherstone is active.

Publication


Featured researches published by Mark Featherstone.


Molecular and Cellular Biology | 1995

Cooperative Interactions between HOX and PBX Proteins Mediated by a Conserved Peptide Motif

Michael L. Phelan; Isabel Rambaldi; Mark Featherstone

Homeoprotein products of the Hox/HOM gene family pattern the animal embryo through the transcriptional regulation of target genes. We have previously shown that the labial group protein HOXA-1 has intrinsically weak DNA-binding activity due to residues in the N-terminal arm of its homeodomain (M. L. Phelan, R. Sadoul, and M. S. Featherstone, Mol. Cell. Biol. 14:5066-5075, 1994). This observation, among others, suggests that HOX and HOM proteins require cofactors for stable interactions with DNA. We have demonstrated that a putative HOX cofactor, PBX1A, participates in cooperative DNA binding with HOXA-1 and the Deformed group protein HOXD-4. Three Abdominal-B class HOX proteins failed to cooperate with PBX1A. We mapped the interacting domain of HOXD-4 to the YPWMK pentapeptide motif, a conserved sequence found N terminal to the homeodomain of HOXA-1 and many other homeoproteins but absent from the Abdominal-B class. The naturally occurring fusion of the transcriptional activation domain of E2A with PBX1 creates an oncoprotein implicated in human pre-B-cell leukemias (M. P. Kamps, C. Murre, X.-H. Sun, and D. Baltimore, Cell 60:547-555, 1990; J. Nourse, J. D. Mellentin, N. Galili, J. Wilkinson, E. Starbridge, S. D. Smith, and M. L. Cleary, Cell 60:535-545, 1990). A pentapeptide mutation that abolished cooperative interaction with PBX1A in vitro also abrogated synergistic transcriptional activation with the E2A/PBX oncoprotein. The direct contact of PBX family members by the HOX pentapeptide is likely to play an important role in developmental and oncogenic processes.


Molecular and Cellular Biology | 2000

Cell Signaling Switches HOX-PBX Complexes from Repressors to Activators of Transcription Mediated by Histone Deacetylases and Histone Acetyltransferases

Maya Saleh; Isabel Rambaldi; Xiang-Jiao Yang; Mark Featherstone

ABSTRACT The Hoxb1 autoregulatory element comprises three HOX-PBX binding sites. Despite the presence of HOXB1 and PBX1, this enhancer fails to activate reporter gene expression in retinoic acid-treated P19 cell monolayers. Activation requires cell aggregation in addition to RA. This suggests that HOX-PBX complexes may repress transcription under some conditions. Consistent with this, multimerized HOX-PBX binding sites repress reporter gene expression in HEK293 cells. We provide a mechanistic basis for repressor function by demonstrating that a corepressor complex, including histone deacetylases (HDACs) 1 and 3, mSIN3B, and N-CoR/SMRT, interacts with PBX1A. We map a site of interaction with HDAC1 to the PBX1 N terminus and show that the PBX partner is required for repression by the HOX-PBX complex. Treatment with the deacetylase inhibitor trichostatin A not only relieves repression but also converts the HOX-PBX complex to a net activator of transcription. We show that this activation function is mediated by the recruitment of the coactivator CREB-binding protein by the HOX partner. Interestingly, HOX-PBX complexes are switched from transcriptional repressors to activators in response to protein kinase A signaling or cell aggregation. Together, our results suggest a model whereby the HOX-PBX complex can act as a repressor or activator of transcription via association with corepressors and coactivators. The model implies that cell signaling is a direct determinant of HOX-PBX function in the patterning of the animal embryo.


Molecular and Cellular Biology | 1999

PBX and MEIS as Non-DNA-Binding Partners in Trimeric Complexes with HOX Proteins

Shanmugam K; Nancy Green; Isabel Rambaldi; Saragovi Hu; Mark Featherstone

ABSTRACT HOX, PBX, and MEIS transcription factors bind DNA through a homeodomain. PBX proteins bind DNA cooperatively as heterodimers with MEIS family members and also with HOX proteins from paralog groups 1 to 10. MEIS proteins cooperatively bind DNA with ABD-B class HOX proteins of groups 9 and 10. Here, we examine aspects of dimeric and higher-order interactions between these three homeodomain classes. The most significant results can be summarized as follows. (i) Most of PBX N terminal to the homeodomain is required for efficient cooperative binding with HOXD4 and HOXD9. (ii) MEIS and PBX proteins form higher-order complexes on a heterodimeric binding site. (iii) Although MEIS does not cooperatively bind DNA with ANTP class HOX proteins, it does form a trimer as a non-DNA-binding partner with DNA-bound PBX-HOXD4. (iv) The N terminus of HOXD4 negatively regulates trimer formation. (v) MEIS forms a similar trimer with DNA-bound PBX-HOXD9. (vi) A related trimer (where MEIS is a non-DNA-binding partner) is formed on a transcriptional promoter within the cell. (vii) We observe an additional trimer class involving non-DNA-bound PBX and DNA-bound MEIS-HOXD9 or MEIS-HOXD10 heterodimers that is enhanced by mutation of the PBX homeodomain. (viii) In this latter trimer, PBX is likely to contact both MEIS and HOXD9/D10. (ix) The stability of DNA binding by all trimers is enhanced relative to the heterodimers. These findings suggest novel functions for PBX and MEIS in modulating the function of DNA-bound MEIS-HOX and PBX-HOX heterodimers, respectively.


Current Opinion in Genetics & Development | 2002

Coactivators in transcription initiation: here are your orders

Mark Featherstone

Coactivators are diverse and multifunctional proteins that act downstream of DNA-binding activators to stimulate transcription. Recent studies elucidate the temporal sequence in which coactivators are recruited to target promoters, and how their enzymatic properties and molecular interactions culminate in transcriptional initiation.


The EMBO Journal | 1987

Hox-1.6: a mouse homeo-box-containing gene member of the Hox-1 complex.

A. Baron; Mark Featherstone; R. E. Hill; A. Hall; Brigitte Galliot; Denis Duboule

Hox‐1.6, a mouse homeo‐box‐containing gene member of the Hox‐1 complex, is described. The Hox‐1.6 homeo‐box shows more divergence than the other members of the complex with the Drosophila Antennapedia‐like homeo‐box class. This previously undescribed gene was studied with respect to its transcription pattern and was found to be expressed during mouse fetal development in an intestine‐specific manner in adults, and in tumours or cell types exhibiting early endodermal‐like differentiation. The study of embryonic partial Hox‐1.6 cDNA clones revealed structural features common to other Drosophila and vertebrate homeo‐box‐containing genes, but also indicated that Hox‐1.6 transcripts might display splicing patterns more complex than those known for other vertebrate homeo‐genes. One of these cDNA clones contains a rather short open reading frame which would encode a protein of approximately 14.5 kd. The use of this clone as a probe for S1 nuclease mapping confirmed that different Hox‐1.6 transcripts were present both in embryonic total RNA and in embryonal carcinoma cell cytoplasmic RNA. These various transcripts are probably generated by an alternative splicing mechanism and may thus encode a set of related proteins.


Journal of Biological Chemistry | 2005

MEIS C Termini Harbor Transcriptional Activation Domains That Respond to Cell Signaling

He Huang; Mojgan Rastegar; Caroline Bodner; Siew-Lee Goh; Isabel Rambaldi; Mark Featherstone

MEIS proteins form heteromeric DNA-binding complexes with PBX monomers and PBX·HOX heterodimers. We have shown previously that transcriptional activation by PBX·HOX is augmented by either protein kinase A (PKA) or the histone deacetylase inhibitor trichostatin A (TSA). To examine the contribution of MEIS proteins to this response, we used the chromatin immunoprecipitation assay to show that MEIS1 in addition to PBX1, HOXA1, and HOXB1 was recruited to a known PBX·HOX target, the Hoxb1 autoregulatory element following Hoxb1 transcriptional activation in P19 cells. Subsequent to TSA treatment, MEIS1 recruitment lagged behind that of HOX and PBX partners. MEIS1A also enhanced the transcriptional activation of a reporter construct bearing the Hoxb1 autoregulatory element after treatment with TSA. The MEIS1 homeodomain and protein-protein interaction with PBX contributed to this activity. We further mapped TSA-responsive and CREB-binding protein-dependent PKA-responsive transactivation domains to the MEIS1A and MEIS1B C termini. Fine mutation of the 56-residue MEIS1A C terminus revealed four discrete regions required for transcriptional activation function. All of the mutations impairing the response to TSA likewise reduced activation by PKA, implying a common mechanistic basis. C-terminal deletion of MEIS1 impaired transactivation without disrupting DNA binding or complex formation with HOX and PBX. Despite sequence similarity to MEIS and a shared ability to form heteromeric complexes with PBX and HOX partners, the PREP1 C terminus does not respond to TSA or PKA. Thus, MEIS C termini possess transcriptional regulatory domains that respond to cell signaling and confer functional differences between MEIS and PREP proteins.


Molecular and Cellular Biology | 2004

Sequential Histone Modifications at Hoxd4 Regulatory Regions Distinguish Anterior from Posterior Embryonic Compartments

Mojgan Rastegar; Laila Kobrossy; Erzsébet Nagy Kovács; Isabel Rambaldi; Mark Featherstone

ABSTRACT Hox genes are differentially expressed along the embryonic anteroposterior axis. We used chromatin immunoprecipitation to detect chromatin changes at the Hoxd4 locus during neurogenesis in P19 cells and embryonic day 8.0 (E8.0) and E10.5 mouse embryos. During Hoxd4 induction in both systems, we observed that histone modifications typical of transcriptionally active chromatin occurred first at the 3′ neural enhancer and then at the promoter. Moreover, the sequential distribution of histone modifications between E8.0 and E10.5 was consistent with a spreading of open chromatin, starting with the enhancer, followed by successively more 5′ intervening sequences, and culminating at the promoter. Neither RNA polymerase II (Pol II) nor CBP associated with the inactive gene. During Hoxd4 induction, CBP and RNA Pol II were recruited first to the enhancer and then to the promoter. Whereas the CBP association was transient, RNA Pol II remained associated with both regulatory regions. Histone modification and transcription factor recruitment occurred in posterior, Hox-expressing embryonic tissues, but never in anterior tissues, where such genes are inactive. Together, our observations demonstrate that the direction of histone modifications at Hoxd4 mirrors colinear gene activation across Hox clusters and that the establishment of anterior and posterior compartments is accompanied by the imposition of distinct chromatin states.


Journal of Biological Chemistry | 1997

Distinct HOX N-terminal Arm Residues Are Responsible for Specificity of DNA Recognition by HOX Monomers and HOX·PBX Heterodimers

Michael L. Phelan; Mark Featherstone

Dimerization with extradenticle or PBX homeoproteins dramatically improves DNA binding by HOX transcription factors, indicating that recognition by such complexes is important for HOX specificity. For HOX monomeric binding, a major determinant of specificity is the flexible N-terminal arm. It makes base-specific contacts via the minor groove, including one to the 1st position of a 5′-TNAT-3′ core by a conserved arginine (Arg-5). Here we show that Arg-5 also contributes to the stability of HOX·PBX complexes, apparently by forming the same DNA contact. We further show that heterodimers of PBX with HOXA1 or HOXD4 proteins have different specificities at another position recognized by the N-terminal arm (the 2nd position in the TNAT core). Importantly, N-terminal arm residues 2 and 3, which distinguish the binding of HOXA1 and HOXD4 monomers, play no role in the specificity of their complexes with PBX. In addition, HOXD9 and HOXD10, which are capable of binding both TTAT and TAAT sites as monomers, can cooperate with PBX1A only on a TTAT site. These data suggest that some DNA contacts made by the N-terminal arm are altered by interaction with PBX.


Mechanisms of Development | 2003

The role of a retinoic acid response element in establishing the anterior neural expression border of Hoxd4 transgenes

Christof Nolte; Angel Amores; Erzsébet Nagy Kovács; John H. Postlethwait; Mark Featherstone

The zebrafish hoxd4a locus was compared to its murine ortholog, Hoxd4. The sequence of regulatory elements, including a DR5 type retinoic acid response element (RARE) required for Hoxd4 neural enhancer activity, are highly conserved. Additionally, zebrafish and mouse neural enhancers function identically in transgenic mouse embryos. We tested whether sequence conservation reflects functional importance by altering the spacing and sequence of the RARE in the Hoxd4 neural enhancer. Stabilizing receptor-DNA interactions did not anteriorize transgene expression. By contrast, conversion of the RARE from a DR5 to a DR2 type element decreased receptor-DNA stability and posteriorized expression. Hence, the setting of the Hox anterior expression border is not a simple function of the affinity of retinoid receptors for their cognate element.


Journal of Biological Chemistry | 1997

Residues Flanking the HOX YPWM Motif Contribute to Cooperative Interactions with PBX

Shanmugam K; Mark Featherstone; Saragovi Hu

Hox genes encode transcription factors that are major determinants of embryonic patterning. Recently, we and others have shown that specific recognition of target sites in DNA is partly achieved through cooperative interaction with the extradenticle/pre-B-cell transformation-related gene (EXD/PBX) family of homeodomain-containing proteins. This interaction is mediated by the YPWM motif present N-terminal to the homeodomain in HOX proteins. In the present study, we use YPWM peptides to confirm the importance of this motif for mediating HOX/PBX interactions. We also used a novel monoclonal antibody directed against the YPWM to show that occlusion of this motif abrogates cooperativity with PBX. In addition, we present evidence that residues flanking the YPWM, both N-terminally and C-terminally, stabilize the HOX·PBX cooperative complex. Because these flanking residues are also conserved among paralogs, they are likely to help distinguish the specificity of HOX/PBX interactions. Our data further show that the relative importance of individual residues within and flanking the YPWM is dependent on the identity of position 6 of the cooperative binding site (TGATTNATGG). These results suggest that interactions between PBX and the YPWM motif are modified by a base pair predicted to contact the N-terminal arm of the HOX homeodomain.

Collaboration


Dive into the Mark Featherstone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge