Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Fegan is active.

Publication


Featured researches published by Mark Fegan.


BMC Genomics | 2010

Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence

Benoit Remenant; Bénédicte Coupat-Goutaland; Alice Guidot; Gilles Cellier; Emmanuel Wicker; Caitilyn Allen; Mark Fegan; Olivier Pruvost; Mounira Elbaz; Alexandra Calteau; Gregory Salvignol; Damien Mornico; Sophie Mangenot; Valérie Barbe; Claudine Médigue; Philippe Prior

BackgroundThe Ralstonia solanacearum species complex includes thousands of strains pathogenic to an unusually wide range of plant species. These globally dispersed and heterogeneous strains cause bacterial wilt diseases, which have major socio-economic impacts. Pathogenicity is an ancestral trait in R. solanacearum and strains with high genetic variation can be subdivided into four phylotypes, correlating to isolates from Asia (phylotype I), the Americas (phylotype IIA and IIB), Africa (phylotype III) and Indonesia (phylotype IV). Comparison of genome sequences strains representative of this phylogenetic diversity can help determine which traits allow this bacterium to be such a pathogen of so many different plant species and how the bacteria survive in many different habitats.ResultsThe genomes of three tomato bacterial wilt pathogens, CFBP2957 (phy. IIA), CMR15 (phy. III) and PSI07 (phy. IV) were sequenced and manually annotated. These genomes were compared with those of three previously sequenced R. solanacearum strains: GMI1000 (tomato, phy. I), IPO1609 (potato, phy. IIB), and Molk2 (banana, phy. IIB). The major genomic features (size, G+C content, number of genes) were conserved across all of the six sequenced strains. Despite relatively high genetic distances (calculated from average nucleotide identity) and many genomic rearrangements, more than 60% of the genes of the megaplasmid and 70% of those on the chromosome are syntenic. The three new genomic sequences revealed the presence of several previously unknown traits, probably acquired by horizontal transfers, within the genomes of R. solanacearum, including a type IV secretion system, a rhi-type anti-mitotic toxin and two small plasmids. Genes involved in virulence appear to be evolving at a faster rate than the genome as a whole.ConclusionsComparative analysis of genome sequences and gene content confirmed the differentiation of R. solanacearum species complex strains into four phylotypes. Genetic distances between strains, in conjunction with CGH analysis of a larger set of strains, revealed differences great enough to consider reclassification of the R. solanacearum species complex into three species. The data are still too fragmentary to link genomic classification and phenotypes, but these new genome sequences identify a pan-genome more representative of the diversity in the R. solanancearum species complex.


International Journal of Systematic and Evolutionary Microbiology | 1999

Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov

Aimin Wen; Mark Fegan; Chris Hayward; Sukumar Chakraborty; Lindsay I. Sly

The phylogenetic relationships among members of the family Comamonadaceae and several unclassified strains were studied by direct sequencing of their PCR-amplified 16S rRNA genes. Based on the 16S rRNA gene sequence analysis, members of the family formed a coherent group. The closest relatives are species of the Rubrivivax sub-group: Leptothrix discophora, Ideonella dechloratans and Rubrivivax gelatinosus. The genus Hydrogenophaga formed two subclusters, as did the species of Acidovorax, whereas the five species of the genus [Aquaspirillum] were polyphyletic. Comamonas acidovorans was phylogenetically distant from the type species of Comamonas, Comamonas terrigena. On the basis of this work and previous studies, Comamonas acidovorans is removed from the genus Comamonas and renamed as Delftia acidovorans gen. nov., comb. nov. Descriptions of the new genus Delftia and of the type species Delftia acidovorans, for which the type strain is ATCC 15668T, are presented.


Applied and Environmental Microbiology | 2007

Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential

Emmanuel Wicker; Laurence Grassart; Régine Coranson-Beaudu; Danièle Mian; Caroline Guilbaud; Mark Fegan; Philippe Prior

ABSTRACT We investigated a destructive pathogenic variant of the plant pathogen Ralstonia solanacearum that was consistently isolated in Martinique (French West Indies). Since the 1960s, bacterial wilt of solanaceous crops in Martinique has been caused primarily by strains of R. solanacearum that belong to either phylotype I or phylotype II. Since 1999, anthurium shade houses have been dramatically affected by uncharacterized phylotype II strains that also affected a wide range of species, such as Heliconia caribea, cucurbitaceous crops, and weeds. From 1989 to 2003, a total of 224 R. solanacearum isolates were collected and compared to 6 strains isolated in Martinique in the 1980s. The genetic diversity and phylogenetic position of selected strains from Martinique were assessed (multiplex PCRs, mutS and egl DNA sequence analysis) and compared to the genetic diversity and phylogenetic position of 32 reference strains covering the known diversity within the R. solanacearum species complex. Twenty-four representative isolates were tested for pathogenicity to Musa species (banana) and tomato, eggplant, and sweet pepper. Based upon both PCR and sequence analysis, 119 Martinique isolates from anthurium, members of the family Cucurbitaceae, Heliconia, and tomato, were determined to belong to a group termed phylotype II/sequevar 4 (II/4). While these strains cluster with the Moko disease-causing strains, they were not pathogenic to banana (NPB). The strains belonging to phylotype II/4NPB were highly pathogenic to tomato, eggplant, and pepper, were able to wilt the resistant tomato variety Hawaii7996, and may latently infect cooking banana. Phylotype II/4NPB constitutes a new pathogenic variant of R. solanacearum that has recently appeared in Martinique and may be latently prevalent throughout Caribbean and Central/South America.


International Journal of Systematic and Evolutionary Microbiology | 1996

Analysis of the Phylogenetic Relationships of Strains of Burkholderia solanacearum, Pseudomonas syzygii, and the Blood Disease Bacterium of Banana Based on 16s rRNA Gene Sequences

Mohsen Taghavi; Chris Hayward; Lindsay I. Sly; Mark Fegan

We determined nearly complete 16S rRNA gene sequences for 19 isolates of Burkholderia solanacearum, three isolates of the blood disease bacterium of bananas, and two isolates of Pseudomonas syzygii, the cause of Sumatra disease of cloves. The dendrogram produced by comparing all of these sequences revealed that there were two divisions, which corresponded to the results obtained previously in a restriction fragment length polymorphism analysis (D. Cook, E. Barlow, and L. Sequeira, Mol. Plant Microbe Interact. 2:113-121, 1989) and a total 16S ribosomal DNA (rDNA) sequence analysis of four isolates representing four biovars of B. solanacearum (X. Li, M. Dorsch, T. Del Dot, L. I. Sly, E. Stackebrandt, and A. C. Hayward, J. Appl. Bacteriol. 74:324-329, 1993). Division 1 comprised biovars 3, 4, and 5 and an aberrant biovar 2 isolate (strain ACH0732), and division 2 included biovars 1, 2, and N2, the blood disease bacterium, and P. syzygii. Specific nucleotides at positions 458 to 460 (UUC) and 474 (A) characterized division 2, whereas in division 1 the nucleotides at these positions were ACU and U, respectively. However, strain ACH0732 had a U at position 458, as did division 2 isolates, and G instead of U at position 474. Division 2 consisted of two subdivisions; one subdivision contained two B. solanacearum isolates that originated from Indonesia, P. syzygii strains, and blood disease bacterium strains, and the other subdivision contained all of the other division 2 isolates. Within division 1, the level of 16S rDNA sequence similarity ranged from 99.8 to 100%, and within division 2, the levels of 16S rDNA sequence similarity ranged from 99.1 to 100%. The division 1 isolates exhibited an average level of 16S rDNA sequence similarity to division 2 isolates of 99.3% (range, 99.1 to 99.5%). The occurrence of consistent polymorphisms in the 16S rDNA sequences of B. solanacearum strains, in particular unique 16S rDNA sequence differences in aberrant biovar 2 isolate ACH0732, and the occurrence of the Indonesian subdivision of division 2 suggest that this group is a rapidly evolving (tachytelic) group.


Systematic and Applied Microbiology | 2000

Partial sequencing of the hrpB and endoglucanase genes confirms and expands the known diversity within the Ralstonia solanacearum species complex.

Stephane Poussier; Philippe Prior; Jacques Luisetti; Chris Hayward; Mark Fegan

We determined partial hrpB and endoglucanase genes sequences for 30 strains of Ralstonia solanacearum and one strain of the blood disease bacterium (BDB), a close relative of Ralstonia solanacearum. Sequence comparisons showed high levels of variability within these two regions of the genome involved in pathogenicity. Phylogenetic analysis based upon sequence comparisons of these two regions revealed three major clusters comprising all Ralstonia solanacearum isolates, the BDB strain constituted a phylogenetically distinct entity. Cluster 1 and cluster 2 corresponded to the previously defined divisions 1 and 2 of Ralstonia solanacearum. Moreover, two subclusters could be identified within cluster 2. The last cluster, designated cluster 3 in this study, included biovar 1 and N2 strains originating from Africa. This recently described group of strains was confirmed to be clearly different from the other strains suggesting a separate evolution from those of both divisions 1 and 2.


Journal of Applied Microbiology | 2010

Stenotrophomonas and Lysobacter: ubiquitous plant-associated gamma-proteobacteria of developing significance in applied microbiology.

A. C. Hayward; Narelle Fegan; Mark Fegan; Graeme Stirling

The exploration of new source materials and the use of alternative isolation and identification methods have led to rapid expansion in the knowledge of diversity; in Lysobacter, 11 new species having been described since 2005, and in Stenotrophomonas with six new species since 2000. The new species of Lysobacter, isolated by dilution and direct plating on standard media, differ in several key phenotypic properties from those obtained by enrichment on complex polysaccharides in the original description of the genus. Revision of the definition of the genus will be required. Both culture‐dependent and culture‐independent methods to assess community structure, in a variety of host and nonhost environments, have established that some species of Lysobacter are a dominant component of the microflora, where previously their presence had not been suspected. Culture‐independent studies have generally not added new information on the occurrence and distribution of Stenotrophomonas maltophilia and other members of the genus, which are readily isolated on standard media from source materials. Lysobacter enzymogenes and Sten. maltophilia produce similar antibiotics and share some enzyme activities which, subject to safety considerations, may make them attractive candidates for use in biological control of plant diseases and of nematodes.


International Journal of Systematic and Evolutionary Microbiology | 1999

DESCRIPTION OF GLUCONACETOBACTER SACCHARI SP. NOV., A NEW SPECIES OF ACETIC ACID BACTERIUM ISOLATED FROM THE LEAF SHEATH OF SUGAR CANE AND FROM THE PINK SUGAR-CANE MEALY BUG

Ingrid H. Franke; Mark Fegan; Chris Hayward; Graham Leonard; Erko Stackebrandt; Lindsay I. Sly

A new species of the genus Gluconacetobacter, for which the name Gluconacetobacter sacchari sp. nov. is proposed, was isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug, Saccharicoccus sacchari, found on sugar cane growing in Queensland and northern New South Wales, Australia. The nearest phylogenetic relatives in the alpha-subclass of the Proteobacteria are Gluconacetobacter liquefaciens and Gluconacetobacter diazotrophicus, which have 98.8-99.3% and 97.9-98.5% 16S rDNA sequence similarity, respectively, to members of Gluconacetobacter sacchari. On the basis of the phylogenetic positioning of the strains, DNA reassociation studies, phenotypic tests and the presence of the Q10 ubiquinone, this new species was assigned to the genus Gluconacetobacter. No single phenotypic characteristic is unique to the species, but the species can be differentiated phenotypically from closely related members of the acetic acid bacteria by growth in the presence of 0.01% malachite green, growth on 30% glucose, an inability to fix nitrogen and an inability to grow with the L-amino acids asparagine, glycine, glutamine, threonine and tryptophan when D-mannitol was supplied as the sole carbon and energy source. The type strain of this species is strain SRI 1794T (= DSM 12717T).


International Journal of Systematic and Evolutionary Microbiology | 2014

Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov.

Irda Safni; Ilse Cleenwerck; Paul De Vos; Mark Fegan; Lindsay I. Sly; Ulrike Kappler

The Ralstonia solanacearum species complex has long been recognized as a group of phenotypically diverse strains that can be subdivided into four phylotypes. Using a polyphasic taxonomic approach on an extensive set of strains, this study provides evidence for a taxonomic and nomenclatural revision of members of this complex. Data obtained from phylogenetic analysis of 16S-23S rRNA ITS gene sequences, 16S-23S rRNA intergenic spacer (ITS) region sequences and partial endoglucanase (egl) gene sequences and DNA-DNA hybridizations demonstrate that the R. solanacearum species complex comprises three genospecies. One of these includes the type strain of Ralstonia solanacearum and consists of strains of R. solanacearum phylotype II only. The second genospecies includes the type strain of Ralstonia syzygii and contains only phylotype IV strains. This genospecies is subdivided into three distinct groups, namely R. syzygii, the causal agent of Sumatra disease on clove trees in Indonesia, R. solanacearum phylotype IV strains isolated from different host plants mostly from Indonesia, and strains of the blood disease bacterium (BDB), the causal agent of the banana blood disease, a bacterial wilt disease in Indonesia that affects bananas and plantains. The last genospecies is composed of R. solanacearum strains that belong to phylotypes I and III. As these genospecies are also supported by phenotypic data that allow the differentiation of the three genospecies, the following taxonomic proposals are made: emendation of the descriptions of Ralstonia solanacearum and Ralstonia syzygii and descriptions of Ralstonia syzygii subsp. nov. (type strain R 001(T) = LMG 10661(T) = DSM 7385(T)) for the current R. syzygii strains, Ralstonia syzygii subsp. indonesiensis subsp. nov. (type strain UQRS 464(T) = LMG 27703(T) = DSM 27478(T)) for the current R. solanacearum phylotype IV strains, Ralstonia syzygii subsp. celebesensis subsp. nov. (type strain UQRS 627(T) = LMG 27706(T) = DSM 27477(T)) for the BDB strains and Ralstonia pseudosolanacearum sp. nov. (type strain UQRS 461(T) = LMG 9673(T) = NCPPB 1029(T)) for the strains of R. solanacearum phylotypes I and III.


PLOS ONE | 2011

Ralstonia syzygii, the Blood Disease Bacterium and some Asian R. solanacearum strains form a single genomic species despite divergent lifestyles.

Benoı̂t Remenant; Jean-Charles de Cambiaire; Gilles Cellier; Jonathan M. Jacobs; Sophie Mangenot; Valérie Barbe; Aurélie Lajus; David Vallenet; Claudine Médigue; Mark Fegan; Caitilyn Allen; Philippe Prior

The Ralstonia solanacearum species complex includes R. solanacearum, R. syzygii, and the Blood Disease Bacterium (BDB). All colonize plant xylem vessels and cause wilt diseases, but with significant biological differences. R. solanacearum is a soilborne bacterium that infects the roots of a broad range of plants. R. syzygii causes Sumatra disease of clove trees and is actively transmitted by cercopoid insects. BDB is also pathogenic to a single host, banana, and is transmitted by pollinating insects. Sequencing and DNA-DNA hybridization studies indicated that despite their phenotypic differences, these three plant pathogens are actually very closely related, falling into the Phylotype IV subgroup of the R. solanacearum species complex. To better understand the relationships among these bacteria, we sequenced and annotated the genomes of R. syzygii strain R24 and BDB strain R229. These genomes were compared to strain PSI07, a closely related Phylotype IV tomato isolate of R. solanacearum, and to five additional R. solanacearum genomes. Whole-genome comparisons confirmed previous phylogenetic results: the three phylotype IV strains share more and larger syntenic regions with each other than with other R. solanacearum strains. Furthermore, the genetic distances between strains, assessed by an in-silico equivalent of DNA-DNA hybridization, unambiguously showed that phylotype IV strains of BDB, R. syzygii and R. solanacearum form one genomic species. Based on these comprehensive data we propose a revision of the taxonomy of the R. solanacearum species complex. The BDB and R. syzygii genomes encoded no obvious unique metabolic capacities and contained no evidence of horizontal gene transfer from bacteria occupying similar niches. Genes specific to R. syzygii and BDB were almost all of unknown function or extrachromosomal origin. Thus, the pathogenic life-styles of these organisms are more probably due to ecological adaptation and genomic convergence during vertical evolution than to the acquisition of DNA by horizontal transfer.


Australasian Plant Pathology | 2006

Diverse members of the Ralstonia solanacearum species complex cause bacterial wilts of banana

Mark Fegan; P. Prior

The bacterial wilts of banana known as Moko disease, Bugtok disease and blood disease are caused by members of the R. solanacearum species complex. R. solanacearum is a heterogeneous species which has been divided into 4 genetic groups known as phylotypes.Within the R. solanacearum species complex, strains that cause Moko and Bugtok diseases belong to phylotype II. The blood disease bacterium, the cause of blood disease, belongs to phylotype IV. This study employs phylogenetic analysis of partial endoglucanase gene sequences to further assess the evolutionary relationships between strains of R. solanacearum causing Moko disease and Bugtok disease and the relationship of the blood disease bacterium to other R. solanacearum strains within phylotype IV of the R. solanacearum species complex. These analyses showed that R. solanacearum Moko disease-causing strains are polyphyletic, forming four related, but distinct, clusters of strains. One of these clusters is a previously unrecognised group of R. solanacearum Moko disease-causing strains. It was also found that R. solanacearum strains that cause Bugtok disease are indistinguishable from strains causing Moko disease in the Philippines. Phylogenetic analysis of partial endoglucanase gene sequences of the strains of the blood disease confirms a close relationship of these strains to R. solanacearum strains within phylotype IV of the R. solanacearum species complex.

Collaboration


Dive into the Mark Fegan's collaboration.

Top Co-Authors

Avatar

Lindsay I. Sly

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

A. C. Hayward

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Philippe Prior

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Chris Hayward

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Caitilyn Allen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benoit Remenant

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Emmanuel Wicker

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. J. Croft

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge