Mark G. Slomiany
Medical University of South Carolina
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark G. Slomiany.
Seminars in Cancer Biology | 2008
Bryan P. Toole; Mark G. Slomiany
Hyaluronan not only is an important structural component of extracellular matrices but also interacts instructively with cells during embryonic development, healing processes, inflammation, and cancer. It binds to several different types of cell surface receptors, including CD44, thus leading to co-regulation of important signaling pathways, notably those induced by activation of receptor tyrosine kinases. Consequently, interactions of both stromal and tumor cell-derived hyaluronan with tumor cells play important cooperative roles in several aspects of malignancy. This review focuses on cell autonomous hyaluronan-tumor cell interactions that lead to activation of receptor tyrosine kinases and enhanced drug resistance. Particular emphasis is placed on the role of hyaluronan-CD44 interactions in drug transporter expression and activity, especially in cancer stem-like cells that are highly malignant and resistant to chemotherapy. Antagonists of hyaluronan-CD44 interaction, especially small hyaluronan oligomers, may be useful in therapeutic strategies aimed at preventing tumor recurrence from these therapy-resistant sub-populations within malignant cancers.
Drug Resistance Updates | 2008
Bryan P. Toole; Mark G. Slomiany
Hyaluronan not only is an important structural component of extracellular matrices but also interacts with cells during dynamic cell processes such as those occurring in cancer. Consequently, interactions of hyaluronan with tumor cells play important cooperative roles in various aspects of malignancy. Hyaluronan binds to several cell surface receptors, including CD44, thus leading to co-regulation of signaling pathways that are important in regulation of multidrug resistance to anticancer drugs, in particular anti-apoptotic pathways induced by activation of receptor tyrosine kinases. Emmprin, a cell surface glycoprotein of the Ig superfamily, stimulates hyaluronan production and downstream signaling consequences. Emmprin and CD44 also interact with various multidrug transporters of the ABC family and monocarboxylate transporters associated with resistance to cancer therapies. Moreover, hyaluronan-CD44 interactions are critical to these properties in the highly malignant, chemotherapy-resistant cancer stem-like cells. Perturbations of the hyaluronan-CD44 interaction at the plasma membrane by various antagonists result in attenuation of receptor tyrosine kinase and transporter activities and inhibition of tumor progression in vivo. These antagonists, especially small hyaluronan oligomers, may be useful in therapeutic strategies aimed at preventing tumor refractoriness or recurrence due to drug-resistant sub-populations within malignant cancers.
Cancer Research | 2009
Mark G. Slomiany; G. Daniel Grass; Angela D. Robertson; Xiao Y. Yang; Bernard L. Maria; Craig Beeson; Bryan P. Toole
Interactions of hyaluronan with CD44 in tumor cells play important cooperative roles in various aspects of malignancy and drug resistance. Emmprin (CD147; basigin) is a cell surface glycoprotein of the immunoglobulin superfamily that is highly up-regulated in malignant cancer cells and stimulates hyaluronan production, as well as several downstream signaling pathways. Emmprin also interacts with various monocarboxylate transporters (MCT). Malignant cancer cells use the glycolytic pathway and require MCTs to efflux lactate that results from glycolysis. Glycolysis and lactate secretion contribute to malignant cell behaviors and drug resistance in tumor cells. In the present study, we find that perturbation of endogenous hyaluronan, using small hyaluronan oligosaccharides, rapidly inhibits lactate efflux from breast carcinoma cells; down-regulation of emmprin, using emmprin small interfering RNA, also results in decreased efflux. In addition, we find that CD44 coimmunoprecipitates with MCT1, MCT4, and emmprin and colocalizes with these proteins at the plasma membrane. Moreover, after treatment of the cells with hyaluronan oligosaccharides, CD44, MCT1, and MCT4 become localized intracellularly whereas emmprin remains at the cell membrane. Together, these data indicate that constitutive interactions among hyaluronan, CD44, and emmprin contribute to regulation of MCT localization and function in the plasma membrane of breast carcinoma cells.
Clinical Cancer Research | 2009
Mark G. Slomiany; Lu Dai; Lauren B. Tolliver; G. Daniel Grass; Yiping Zeng; Bryan P. Toole
Purpose: CD44 is one of the most common markers used for identification of highly tumorigenic subpopulations of human carcinoma cells, but little is known about the function of CD44 or its major ligand, hyaluronan, in these cells. The purpose of this study was to investigate the involvement of hyaluronan and its interaction with CD44 in the properties of a tumorigenic subpopulation of primary ovarian carcinoma cells. Experimental Design: A tumorigenic subpopulation was identified in ascites fluids from ovarian carcinoma patients by expression of high CD133 levels. Treatment with small hyaluronan oligosaccharides, which dissociate constitutive hyaluronan polymer-CD44 interactions, was used to test the importance of hyaluronan-CD44 interaction in assembly of multidrug and monocarboxylate transporters and receptor tyrosine kinases in the plasma membrane of cells with high CD133 levels, and in the tumorigenic capacity of the CD133-high subpopulation. Results: Although total CD44 levels were similar in cells with high or low CD133 expression, CD44 was present in close association with transporters, receptor tyrosine kinases, and emmprin (CD147) in the plasma membrane of cells with high CD133 levels. Treatment with small hyaluronan oligosaccharides reduced association of the transporters and receptor tyrosine kinases with CD44 in the plasma membrane, diminished drug transporter activity, and inhibited i.p. tumorigenesis in these cells. Conclusions: We conclude that hyaluronan-CD44 interaction plays an important role in the properties of highly tumorigenic cells by stabilizing oncogenic complexes in their plasma membrane, and that treatment with hyaluronan-CD44 antagonists provides a logical therapeutic approach for abrogating the properties of these cells. (Clin Cancer Res 2009;15(24):7593–601)
Journal of Pharmacology and Experimental Therapeutics | 2006
Mark G. Slomiany; Steven A. Rosenzweig
Hypoxia-induced stress plays a central role in retinal vascular disease and cancer. Increased hypoxia-inducible factor-1α (Hif-1α) expression leads to HIF-1 formation and the production of vascular endothelial growth factor (VEGF). Cytokines, including insulin-like growth factor-1 (IGF-1), also stimulate VEGF secretion. In this study, we examined the relationship between IGF-1 signaling, HIF-1α protein turnover and VEGF secretion in the ARPE-19 retinal pigment epithelial cell line. Northern analysis revealed that IGF-1 stimulated Hif-1α message expression, whereas the hypoxia-mimetic CoCl2 did not. CoCl2 treatment increased Hif-1α protein accumulation to a greater extent than IGF-1 treatment. However, IGF-1 stimulated a more significant increase in VEGF secretion. IGF-1-stimulated VEGF promoter activity was phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR (mammalian target of rapamycin)-dependent, whereas VEGF secretion was only partially reduced by inhibition of PI3K/Akt/mTOR and HIF-1 activities. Analysis of VEGF promoter truncation mutants indicated that sensitivity to CoCl2 was hypoxia response element (HRE)-dependent with the region upstream of the HRE conferring IGF-1 sensitivity. In conclusion, IGF-1 regulates VEGF expression and secretion via HIF-1-dependent and -independent pathways.
Cancer Research | 2009
Mark G. Slomiany; Lu Dai; Paul A. Bomar; Thomas J. Knackstedt; D. Alex Kranc; Lauren B. Tolliver; Bernard L. Maria; Bryan P. Toole
Malignant peripheral nerve sheath tumors (MPNST) develop in approximately 10% of neurofibromatosis type-1 patients and are a major contributing factor to neurofibromatosis-1 patient mortality and morbidity. MPNSTs are multidrug resistant, and thus long-term patient survival rates are poor after standard doxorubicin or multiagent chemotherapies. We show that the hyaluronan receptor CD44 forms complexes with multidrug transporters, BCRP (ABCG2) and P-glycoprotein (ABCB1), in the plasma membrane of human MPNST cells. Small hyaluronan oligosaccharides antagonize hyaluronan-CD44-mediated processes and inhibit hyaluronan production. Treatment of MPNST cells with the hyaluronan oligomers causes disassembly of CD44-transporter complexes and induces internalization of CD44, BCRP, and P-glycoprotein. Consequently, the oligomers suppress drug transporter activity and increase sensitivity to doxorubicin treatment in culture. In vivo, systemic administration of hyaluronan oligomers inhibits growth of MPNST xenografts. Moreover, the oligomers and doxorubicin act synergistically in vivo, in that combined suboptimal doses induce tumor regression to a greater extent than the additive effects of each agent alone. These findings indicate that constitutive hyaluronan-CD44 interactions contribute to drug transporter localization and function at the plasma membrane, and that attenuating hyaluronan-CD44 interactions sensitizes MPNSTs to doxorubicin in vitro and in vivo. These results also show the potential efficacy of hyaluronan oligomers, which are nontoxic and nonimmunogenic, as an adjuvant for chemotherapy in MPNST patients.
Oncogene | 2010
John T. Lucas; Bharathi P. Salimath; Mark G. Slomiany; Steven A. Rosenzweig
We previously reported a vascular endothelial growth factor (VEGF) autocrine loop in head and neck squamous cell carcinoma (HNSCC) cell lines, supporting a role for VEGF in HNSCC tumorigenesis. Using a phosphotyrosine proteomics approach, we screened the HNSCC cell line, squamous cell carcinoma-9 for effectors of VEGFR2 signaling. A cluster of proteins involved in cell migration and invasion, including the p130Cas paralog, human enhancer of filamentation 1 (HEF1/Cas-L/Nedd9) was identified. HEF1 silencing and overexpression studies revealed a role for VEGF in regulating cell migration, invasion and matrix metalloproteinase (MMP) expression in a HEF1-dependent manner. Moreover, cells plated on extracellular matrix-coated coverslips showed enhanced invadopodia formation in response to VEGF that was HEF1-dependent. Immunolocalization revealed that HEF1 colocalized to invadopodia with MT1-MMP. Analysis of HNSCC tissue microarrays for HEF1 immunoreactivity revealed a 6.5-fold increase in the odds of having a metastasis with a high HEF1 score compared with a low HEF1 score. These findings suggest that HEF1 may be prognostic for advanced stage HNSCC. They also show for the first time that HEF1 is required for VEGF-mediated HNSCC cell migration and invasion, consistent with HEF1s recent identification as a metastatic regulator. These results support a strategy targeting VEGF:VEGFR2 in HNSCC therapeutics.
Cancer Research | 2010
Zhiqiang Qin; Lu Dai; Mark G. Slomiany; Bryan P. Toole; Chris Parsons
Emmprin (extracellular matrix metalloproteinase inducer) is a multifunctional glycoprotein expressed by cancer cells and stromal cells in the tumor microenvironment. Through both direct effects within tumor cells and promotion of tumor-stroma interactions, emmprin induces tumor cell invasiveness and regional angiogenesis. The Kaposis sarcoma-associated herpesvirus (KSHV) is a common etiology for cancers arising in the setting of immune suppression, including Kaposis sarcoma and primary effusion lymphoma. However, whether emmprin expression and function are regulated by KSHV or other oncogenic viruses in the tumor microenvironment to promote viral cancer pathogenesis remains unknown. Fibroblasts and endothelial cells support latent KSHV infection and represent cellular components of Kaposis sarcoma lesions. Therefore, we used primary human fibroblasts and endothelial cells to determine whether KSHV itself regulates emmprin expression, and whether KSHV-emmprin interactions mediate cell invasiveness. We found that KSHV promotes fibroblast and endothelial cell invasiveness following de novo infection through the upregulation of emmprin, and that this effect is mediated by the KSHV-encoded latency-associated nuclear antigen. We also found that emmprin promotes invasiveness, as well as colony formation, by primary effusion lymphoma cells derived from human tumors. Collectively, these data implicate KSHV activation of emmprin as an important mechanism for cancer progression and support the potential utility of targeting emmprin as a novel therapeutic approach for KSHV-associated tumors.
Journal of Child Neurology | 2008
Bernard L. Maria; Nalin Gupta; Anne G. Gilg; May Abdel-Wahab; Anthony P. Leonard; Mark G. Slomiany; William G. Wheeler; Lauren B. Tolliver; Michael A. Babcock; John T. Lucas; Bryan P. Toole
Although significant advances have been made in treating malignant pediatric central nervous system tumors such as medulloblastoma, no effective therapy exists for diffuse pontine glioma or intramedullary spinal astrocytoma. Biology of these 2 tumors is poorly understood, in part because diffuse pontine gliomas are not treated surgically, and tumor specimens from intramedullary spinal astrocytomas are rare and minuscule. At the 2007 Neurobiology of Disease in Children Symposium, we presented evidence that malignant glioma behaviors, including antiapoptosis, invasiveness, and treatment resistance, are enhanced by hyaluronan, an extracellular glycosaminoglycan. We review the clinical course of pediatric intramedullary spinal astrocytoma and diffuse pontine glioma, and show expression of membrane proteins that interact with hyaluronan: CD44, extracellular matrix metalloproteinase inducer, and breast cancer resistance protein (BCRP/ABCG2). Furthermore, we describe novel animal models of these tumors for preclinical studies. These findings suggest that hyaluronan antagonism has potential therapeutic value in malignant central nervous system tumors.
Archives of Biochemistry and Biophysics | 2010
Monalisa Swain; Mark G. Slomiany; Steven A. Rosenzweig; Hanudatta S. Atreya
The diverse biological activities of the insulin-like growth factors (IGF-1 and IGF-2) are mediated by the IGF-1 receptor (IGF-1R). These actions are modulated by a family of six IGF-binding proteins (IGFBP-1-6; 22-31 kDa) that via high affinity binding to the IGFs (K(D) approximately 300-700 pM) both protect the IGFs in the circulation and attenuate IGF action by blocking their receptor access. In recent years, IGFBPs have been implicated in a variety of cancers. However, the structural basis of their interaction with IGFs and/or other proteins is not completely understood. A critical challenge in the structural characterization of full-length IGFBPs has been the difficulty in expressing these proteins at levels suitable for NMR/X-ray crystallography analysis. Here we describe the high-yield expression of full-length recombinant human IGFBP-2 (rhIGFBP-2) in Escherichia coli. Using a single step purification protocol, rhIGFBP-2 was obtained with >95% purity and structurally characterized using NMR spectroscopy. The protein was found to exist as a monomer at the high concentrations required for structural studies and to exist in a single conformation exhibiting a unique intra-molecular disulfide-bonding pattern. The protein retained full biologic activity. This study represents the first high-yield expression of wild-type recombinant human IGFBP-2 in E. coli and first structural characterization of a full-length IGFBP.