Mark G. St. John
Landcare Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark G. St. John.
Global Change Biology | 2008
Diana H. Wall; Mark A. Bradford; Mark G. St. John; J. A. Trofymow; Valerie M. Behan-Pelletier; David E. Bignell; J. Mark Dangerfield; William J. Parton; Josef Rusek; Winfried Voigt; Volkmar Wolters; Holley Zadeh Gardel; Fred O. Ayuke; Richard Bashford; Olga I. Beljakova; Patrick J. Bohlen; Alain Brauman; Stephen Flemming; Joh R. Henschel; Dan L. Johnson; T. Hefin Jones; Marcela Kovarova; J. Marty Kranabetter; Les Kutny; Kuo‐Chuan Lin; Mohamed Maryati; Dominique Masse; Andrei Pokarzhevskii; Homathevi Rahman; Millor G. Sabará
Climate and litter quality are primary drivers of terrestrial decomposition and, based on evidence from multisite experiments at regional and global scales, are universally factored into global decomposition models. In contrast, soil animals are considered key regulators of decomposition at local scales but their role at larger scales is unresolved. Soil animals are consequently excluded from global models of organic mineralization processes. Incomplete assessment of the roles of soil animals stems from the difficulties of manipulating invertebrate animals experimentally across large geographic gradients. This is compounded by deficient or inconsistent taxonomy. We report a global decomposition experiment to assess the importance of soil animals in C mineralization, in which a common grass litter substrate was exposed to natural decomposition in either control or reduced animal treatments across 30 sites distributed from 43°S to 68°N on six continents. Animals in the mesofaunal size range were recovered from the litter by Tullgren extraction and identified to common specifications, mostly at the ordinal level. The design of the trials enabled faunal contribution to be evaluated against abiotic parameters between sites. Soil animals increase decomposition rates in temperate and wet tropical climates, but have neutral effects where temperature or moisture constrain biological activity. Our findings highlight that faunal influences on decomposition are dependent on prevailing climatic conditions. We conclude that (1) inclusion of soil animals will improve the predictive capabilities of region- or biome-scale decomposition models, (2) soil animal influences on decomposition are important at the regional scale when attempting to predict global change scenarios, and (3) the statistical relationship between decomposition rates and climate, at the global scale, is robust against changes in soil faunal abundance and diversity.
Ecology Letters | 2011
Kate H. Orwin; Miko U. F. Kirschbaum; Mark G. St. John; Ian A. Dickie
Understanding the factors that drive soil carbon (C) accumulation is of fundamental importance given their potential to mitigate climate change. Much research has focused on the relationship between plant traits and C sequestration, but no studies to date have quantitatively considered traits of their mycorrhizal symbionts. Here, we use a modelling approach to assess the contribution of an important mycorrhizal fungal trait, organic nutrient uptake, to soil C accumulation. We show that organic nutrient uptake can significantly increase soil C storage, and that it has a greater effect under nutrient-limited conditions. The main mechanism behind this was an increase in plant C fixation and subsequent increased C inputs to soil through mycorrhizal fungi. Reduced decomposition due to increased nutrient limitation of saprotrophs also played a role. Our results indicate that direct uptake of nutrients from organic pools by mycorrhizal fungi could have a significant effect on ecosystem C cycling and storage.
Aob Plants | 2014
Ian A. Dickie; Mark G. St. John; G. W. Yeates; Chris W. Morse; Karen I. Bonner; Kate H. Orwin; Duane A. Peltzer
Invasive plants alter plant communities and transform landscapes aboveground, but also have strong belowground effects that are potentially even more important to ecosystem outcomes. Using management treatments of the widespread invasive tree, Lodgepole Pine, we find that pines and pine removal transform belowground ecosystems, increasing ectomycorrhizal inoculum and driving a change from slow-cycling fungal-dominated soils to fast-cycling bacterial-dominated soils with increased nutrient availability. This results in increased growth of graminoids, particularly exotic grasses, and facilitation of Douglas-fir establishment, hindering ecosystem restoration. The results highlight the importance of considering multiple species interactions in invasion, particularly in terms of belowground legacies.
Ecology | 2006
Mark G. St. John; Diana H. Wall; H. William Hunt
Associations between plants and animals in aboveground communities are often predictable and specific. This has been exploited for the purposes of estimating the diversity of animal species based on the diversity of plant species. The introduction of invasive alien plants into an ecosystem can result in dramatic changes in both the native plant and animal assemblages. Few data exist at the species level to determine whether belowground animal assemblages share the same degree of association to plants. The hypotheses that soil mites (Acari) form assemblages specifically associated with different native grass species in an unmanipulated natural ecosystem and that invasive alien grasses will impact soil mite assemblage composition in this setting were tested. Soil mites sampled beneath five native and two invasive alien species of grasses at the Konza Prairie Biological Station, Kansas, USA, were similarly abundant, species rich, diverse, and taxonomically distinct. No mite species had affinities for a specific grass species. There was no evidence from analysis of similarity, canonical correspondence analysis, or a nonparametric assemblage analysis that the assemblage composition of soil mites was specific to grass species. Results suggest that soil mite assemblages were more related to characteristics of the plant assemblage as a whole or prevailing soil conditions. The most recent invasive alien grass did not support a successionally younger mite fauna, based on the ratio of mesostigmatid to oribatid mites, and neither of the two invasive grasses influenced mite assemblage structure, possibly because they had not yet substantially altered the soil environment. Our results suggest that extrapolations of soil mite diversity based on assumptions of plant specificity would be invalid.
Frontiers in Ecology and Evolution | 2015
Kelly S. Ramirez; Markus Döring; Nico Eisenhauer; Ciro Gardi; Josh Ladau; Jonathan W. Leff; Guillaume Lentendu; Zoë Lindo; Matthias C. Rillig; David Russell; Stefan Scheu; Mark G. St. John; Franciska T. de Vries; Tesfaye Wubet; Wim H. van der Putten; Diana H. Wall
Soil biodiversity is immense, with an estimated 10-100 million organisms belonging to over 5000 taxa in a handful of soil. In spite of the importance of soil biodiversity for ecosystem functions and services, information on soil species, from taxonomy to biogeographical patterns, is incomplete and there is no infrastructure to connect pre-existing or future data. Here, we propose a global platform to allow for greater access to soil biodiversity information by linking databases and repositories through a single open portal. The proposed platform would for the first time, link data on soil organisms from different global sites and biomes, and will be inclusive of all data types, from molecular sequences to morphology measurements and other supporting information. Access to soil biodiversity species records and information will be instrumental to progressing scientific research and education. Further, as demonstrated by previous biodiversity synthesis efforts, data availability is key for adapting to, and creating mitigation plans in response to global changes. With the rapid influx of soil biodiversity data, now is the time to take the first steps forward in establishing a global soil biodiversity information platform.
Oecologia | 2016
Kate H. Orwin; David A. Wardle; David R. Towns; Mark G. St. John; Peter J. Bellingham; Christopher J. Jones; Brian M. Fitzgerald; Richard G. Parrish; Phil O’B. Lyver
Vertebrate consumers can be important drivers of the structure and functioning of ecosystems, including the soil and litter invertebrate communities that drive many ecosystem processes. Burrowing seabirds, as prevalent vertebrate consumers, have the potential to impact consumptive effects via adding marine nutrients to soil (i.e. resource subsidies) and non-consumptive effects via soil disturbance associated with excavating burrows (i.e. ecosystem engineering). However, the exact mechanisms by which they influence invertebrates are poorly understood. We examined how soil chemistry and plant and invertebrate communities changed across a gradient of seabird burrow density on two islands in northern New Zealand. Increasing seabird burrow density was associated with increased soil nutrient availability and changes in plant community structure and the abundance of nearly all the measured invertebrate groups. Increasing seabird densities had a negative effect on invertebrates that were strongly influenced by soil-surface litter, a positive effect on fungal-feeding invertebrates, and variable effects on invertebrate groups with diverse feeding strategies. Gastropoda and Araneae species richness and composition were also influenced by seabird activity. Generalized multilevel path analysis revealed that invertebrate responses were strongly driven by seabird engineering effects, via increased soil disturbance, reduced soil-surface litter, and changes in trophic interactions. Almost no significant effects of resource subsidies were detected. Our results show that seabirds, and in particular their non-consumptive effects, were significant drivers of invertebrate food web structure. Reductions in seabird populations, due to predation and human activity, may therefore have far-reaching consequences for the functioning of these ecosystems.
Journal of Applied Ecology | 2011
Ian A. Dickie; G. W. Yeates; Mark G. St. John; Bryan A. Stevenson; John T. Scott; Matthias C. Rillig; Duane A. Peltzer; Kate H. Orwin; Miko U. F. Kirschbaum; John E. Hunt; Larry E. Burrows; Margaret M. Barbour; Jackie Aislabie
Soil Biology & Biochemistry | 2011
Mark G. St. John; Kate H. Orwin; Ian A. Dickie
Journal of Ecology | 2014
Paul Kardol; Ian A. Dickie; Mark G. St. John; Sean W. Husheer; Karen I. Bonner; Peter J. Bellingham; David A. Wardle
FEMS Microbiology Ecology | 2004
W.H. van der Putten; J. M. Anderson; Richard D. Bardgett; Valerie M. Behan-Pelletier; David E. Bignell; George G. Brown; Valerie K. Brown; L. Brussaard; H.W. Hunt; Philip Ineson; Tineke H. Jones; Patrick Lavelle; Eldor A. Paul; Mark G. St. John; David A. Wardle; T. Wojtowicz; Diana H. Wall