Mark H. Finger
Universities Space Research Association
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark H. Finger.
Astrophysical Journal Supplement Series | 1997
Lars Bildsten; Deepto Chakrabarty; John Chiu; Mark H. Finger; Danny T. Koh; Robert W. Nelson; Thomas A. Prince; B. C. Rubin; D. Matthew Scott; Mark Thomas Stollberg; Brian A. Vaughan; Colleen A. Wilson; Robert B. Wilson
We discuss recent observations of accreting binary pulsars with the all-sky BATSE instrument on the Compton Gamma Ray Observatory. BATSE has detected and studied nearly half of the known accreting pulsar systems. Continuous timing studies over a two-year period have yielded accurate orbital parameters for 9 of these systems, as well as new insights into long-term accretion torque histories.
Nature | 2005
David M. Palmer; S. D. Barthelmy; Neil Gehrels; R. M. Kippen; T. Cayton; C. Kouveliotou; David Eichler; R. A. M. J. Wijers; Peter M. Woods; Jonathan Granot; Yuri Lyubarsky; E. Ramirez-Ruiz; Louis M. Barbier; Margaret Chester; J. R. Cummings; E. E. Fenimore; Mark H. Finger; B. M. Gaensler; Derek D. Hullinger; Hans A. Krimm; Craig B. Markwardt; John A. Nousek; Ann Marie Parsons; S.K. Patel; T. Sakamoto; G. Sato; M. Suzuki; J. Tueller
Two classes of rotating neutron stars—soft γ-ray repeaters (SGRs) and anomalous X-ray pulsars—are magnetars, whose X-ray emission is powered by a very strong magnetic field (B ≈ 1015 G). SGRs occasionally become ‘active’, producing many short X-ray bursts. Extremely rarely, an SGR emits a giant flare with a total energy about a thousand times higher than in a typical burst. Here we report that SGR 1806–20 emitted a giant flare on 27 December 2004. The total (isotropic) flare energy is 2 × 1046 erg, which is about a hundred times higher than the other two previously observed giant flares. The energy release probably occurred during a catastrophic reconfiguration of the neutron stars magnetic field. If the event had occurred at a larger distance, but within 40 megaparsecs, it would have resembled a short, hard γ-ray burst, suggesting that flares from extragalactic SGRs may form a subclass of such bursts.1 Los Alamos National Laboratory, Los Alamos, NM, 87545, USA 2 NASA/Goddard Space Flight Center, Greenbelt, MD, 20771, USA 3 NASA/Marshall Space Flight Center, NSSTC, XD-12, 320 Sparkman Dr., Huntsville, AL 35805, USA 4 Department of Physics, Ben Gurion University, POB 653, Beer Sheva 84105, Israel 5 Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Kruislaan 403, 1098 SJ, Amster-
The Astrophysical Journal | 1999
C. Kouveliotou; Tod E. Strohmayer; K. Hurley; J. van Paradijs; Mark H. Finger; S. Dieters; Peter M. Woods; Christopher Thompson; Richard C. Duncan
The soft gamma repeater SGR 1900+14 became active again on 1998 June after a long period of quiescence; it remained at a low state of activity until 1998 August, when it emitted a series of extraordinarily intense outbursts. We have observed the source with the Rossi X-Ray Timing Explorer twice, during the onset of each active episode. We confirm the pulsations at the 5.16 s period reported earlier from SGR 1900+14. Here we report the detection of a secular spin-down of the pulse period at an average rate of 1.1 × 10-10 s s-1. In view of the strong similarities between SGRs, we attribute the spin-down of SGR 1900+14 to magnetic dipole radiation, possibly accelerated by a quiescent flux, as in the case of SGR 1806-20. This allows an estimate of the pulsar dipolar magnetic field, which is (2–8) × 1014 G. Our results confirm that SGRs are magnetars.
The evolution of X‐ray binaries | 1994
Thomas A. Prince; Lars Bildsten; Deepto Chakrabarty; Robert B. Wilson; Mark H. Finger
We discuss recent observations of accreting binary pulsars with the all‐sky BATSE instrument on the Compton Gamma Ray Observatory. BATSE has detected and studied nearly half of the known accreting pulsar systems. Continuous timing studies over a two‐year period have yielded accurate orbital parameters for 9 of these systems, as well as new insights into long‐term accretion torque histories.
The Astrophysical Journal | 2001
Peter M. Woods; C. Kouveliotou; Ersin Gogus; Mark H. Finger; Don Smith; K. Hurley; Christopher Thompson
We report the detection of large flux changes in the persistent X-ray flux of soft gamma repeater (SGR) 1900+14 during its burst active episode in 1998. Most notably, we find a factor of ~700 increase in the nonburst X-ray flux following the August 27 flare, which decayed in time as a power law. Our measurements indicate that the pulse fraction remains constant throughout this decay. This suggests a global flux enhancement as a consequence of the August 27 flare rather than localized heating. While the persistent flux has since recovered to the preoutburst level, the pulse profile has not. The pulse shape changed to a near sinusoidal profile within the tail of the August 27 flare (in γ-rays), and this effect has persisted for more than 1.5 years (in X-rays). The results presented here suggest that the magnetic field of the neutron star in SGR 1900+14 was significantly altered (perhaps globally) during the giant flare of August 27.
The Astrophysical Journal | 2000
Christopher Thompson; Robert C. Duncan; Peter M. Woods; C. Kouveliotou; Mark H. Finger; Jan van Paradijs
We consider the physical implications of the rapid spin-down of soft gamma repeater SGR 1900+14 reported by Woods and colleagues in 1999. During an 80 day interval between 1998 June and the large outburst on 1998 August 27, the mean spin-down rate increased by a factor of 2.3, resulting in a positive period offset of ΔP/P = 10-4. A radiation-hydrodynamical outflow associated with the August 27 event could impart the required torque, but only if the dipole magnetic field is stronger than ~1014 G and the outflow lasts longer and/or is more energetic than the observed X-ray flare. A positive period increment is also a natural consequence of a gradual, plastic deformation of the neutron star crust by an intense magnetic field, which forces the neutron superfluid to rotate more slowly than the crust. Sudden unpinning of the neutron vortex lines during the August 27 event would then induce a glitch opposite in sign to those observed in young pulsars, but of a much larger magnitude as a result of the slower rotation. The change in the persistent X-ray light curve following the August 27 event is ascribed to continued particle heating in the active region of that outburst. The enhanced X-ray output can be powered by a steady current flowing through the magnetosphere, induced by the twisting motion of the crust. The long-term rate of spin-down appears to be accelerated with respect to a simple magnetic dipole torque. Accelerated spin-down of a seismically active magnetar will occur when its persistent output of Alfven waves and particles exceeds its spin-down luminosity or if particle flows modulate the ratio of conduction to displacement currents in the outer magnetosphere. We suggest that SGRs experience some episodes of relative inactivity, with diminished , and that such inactive magnetars are observed as anomalous X-ray pulsars (AXPs). The reappearance of persistent X-ray emission from SGR 1900+14 within one day of the August 27 event provides strong evidence that the persistent emission is not powered by accretion.
The Astrophysical Journal | 1999
Peter M. Woods; C. Kouveliotou; Jan van Paradijs; K. Hurley; R. Marc Kippen; Mark H. Finger; Michael Stephen Briggs; S. Dieters; G. J. Fishman
We report the discovery of a new soft gamma repeater (SGR), SGR 1627-41, and present BATSE observations of the burst emission and BeppoSAX Narrow-Field Instrument observations of the probable persistent X-ray counterpart to this SGR. All but one burst spectrum are well fit by an optically thin thermal bremsstrahlung model with kT values between 25 and 35 keV. The spectrum of the X-ray counterpart, SAX J1635.8-4736, is similar to that of other persistent SGR X-ray counterparts. We find weak evidence for a periodic signal at 6.41 s in the light curve for this source. Like other SGRs, this source appears to be associated with a young supernova remnant, G337.0-0.1. Based upon the peak luminosities of bursts observed from this SGR, we find a lower limit on the dipole magnetic field of the neutron star of B(sub dipole) approximately > 5 x 10(exp 14) G.
The Astrophysical Journal | 2011
C. Wilson-Hodge; Michael L. Cherry; Gary Lee Case; Wayne H. Baumgartner; E. Beklen; P. Narayana Bhat; M. S. Briggs; Ascension Camero-Arranz; Vandiver Chaplin; V. Connaughton; Mark H. Finger; Neil Gehrels; J. Greiner; Keith Jahoda; P. Jenke; R. Marc Kippen; C. Kouveliotou; Hans A. Krimm; Erik Kuulkers; Niels Lund; Charles A. Meegan; L. Natalucci; W. S. Paciesas; Robert D. Preece; James Rodi; Nikolai Shaposhnikov; Gerald K. Skinner; D. A. Swartz; Andreas von Kienlin; R. Diehl
The Crab Nebula is the only hard X-ray source in the sky that is both bright enough and steady enough to be easily used as a standard candle. As a result, it has been used as a normalization standard by most X-ray/gamma-ray telescopes. Although small-scale variations in the nebula are well known, since the start of science operations of the Fermi Gamma-ray Burst Monitor (GBM) in 2008 August, a ~7% (70 mCrab) decline has been observed in the overall Crab Nebula flux in the 15-50 keV band, measured with the Earth occultation technique. This decline is independently confirmed in the ~15-50 keV band with three other instruments: the Swift Burst Alert Telescope (Swift/BAT), the Rossi X-ray Timing Explorer Proportional Counter Array (RXTE/PCA), and the Imager on-Board the INTEGRAL Satellite (IBIS). A similar decline is also observed in the ~3-15 keV data from the RXTE/PCA and in the 50-100 keV band with GBM, Swift/BAT, and INTEGRAL/IBIS. The pulsed flux measured with RXTE/PCA since 1999 is consistent with the pulsar spin-down, indicating that the observed changes are nebular. Correlated variations in the Crab Nebula flux on a ~3 year timescale are also seen independently with the PCA, BAT, and IBIS from 2005 to 2008, with a flux minimum in 2007 April. As of 2010 August, the current flux has declined below the 2007 minimum.
The Astrophysical Journal | 1997
Deepto Chakrabarty; Lars Bildsten; John Mace Grunsfeld; Danny T. Koh; Thomas A. Prince; Brian A. Vaughan; Mark H. Finger; D. Matthew Scott; Robert B. Wilson
Over 5 yr of hard X-ray (20-60 keV) monitoring of the 7.66 s accretion-powered pulsar 4U 1626-67 with the Compton Gamma Ray Observatory/BATSE large-area detectors has revealed that the neutron star is now steadily spinning down, in marked contrast to the steady spin-up observed during 1977-1989. This is the second accreting pulsar (the other is GX 1+4) that has shown extended, steady intervals of both spin-up and spin-down. Remarkably, the magnitudes of the spin-up and spin-down torques differ by only 15%, with the neutron star spin changing on a timescale |ν/dot ν| ≈ 5000 yr in both states. The current spin-down rate is itself decreasing on a timescale |dot ν/bar ν| ≈ 26 yr. The long-term timing history shows small-amplitude variations on a 4000 day timescale, which are probably due to variations in the mass transfer rate. The pulsed 20-60 keV emission from 4U 1626-67 is well-fitted by a power-law spectrum with photon index γ = 4.9 and a typical pulsed intensity of 1.5 × 10^(-10) ergs cm^(-2) s^(-1). The low count rates with BATSE prohibited us from constraining the reported 42 minute binary orbit, but we can rule out long-period orbits in the range 2 days lesssim Porb lesssim 900 days. We compare the long-term torque behavior of 4U 1626-67 to other disk-fed accreting pulsars and discuss the implications of our results for the various theories of magnetic accretion torques. The abrupt change in the sign of the torque is difficult to reconcile with the extremely smooth spin-down now observed. The strength of the torque noise in 4U 1626-67, ~10^(-22) Hz^2 s^(-2) Hz^(-1), is the smallest ever measured for an accreting X-ray pulsar, and it is comparable to the timing noise seen in young radio pulsars. We close by pointing out that the core temperature and external torque (the two parameters potentially relevant to internal sources of timing noise) of an accreting neutron star are also comparable to those of young radio pulsars.
The Astrophysical Journal | 2007
Peter M. Woods; C. Kouveliotou; Mark H. Finger; Ersin Gogus; Colleen A. Wilson; Sandeep K. Patel; K. Hurley
We report on the evolution of key spectral and temporal parameters of SGR 1806-20 prior to and following the highly energetic giant flare of 2004 December 27. Using RXTE, we track the pulse frequency of the SGR and find that the spin-down rate varied erratically in the months before and after the flare. Contrary to the giant flare in SGR 1900+14, we find no evidence for a discrete jump in spin frequency at the time of the December 27th flare (|Δν/ν| < 5 × 10-6). In the months surrounding the flare, we find a strong correlation between pulsed flux and torque consistent with the model for magnetar magnetosphere electrodynamics proposed by Thompson et al. As with the flare in SGR 1900+14, the pulse morphology of SGR 1806-20 changes drastically following the flare. Using Chandra and other publicly available imaging X-ray detector observations, we construct a spectral history of SGR 1806-20 from 1993 to 2005. The usual magnetar persistent emission spectral model of a power law plus a blackbody provides an excellent fit to the data. We confirm the earlier finding by Mereghetti et al. of increasing spectral hardness of SGR 1806-20 between 1993 and 2004. However, our results indicate significant differences in the temporal evolution of the spectral hardening. Rather than a direct correlation between torque and spectral hardness, we find evidence for a sudden torque change that preceded a gradual hardening of the energy spectrum on a timescale of years. Interestingly, the spectral hardness, spin-down rate, phase-averaged flux, and pulsed flux of SGR 1806-20 all peak months before the flare epoch.