Mark Howarth
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark Howarth.
Nature Methods | 2005
Irwin Chen; Mark Howarth; Weiying Lin; Alice Y. Ting
We report a highly specific, robust and rapid new method for labeling cell surface proteins with biophysical probes. The method uses the Escherichia coli enzyme biotin ligase (BirA), which sequence-specifically ligates biotin to a 15-amino-acid acceptor peptide (AP). We report that BirA also accepts a ketone isostere of biotin as a cofactor, ligating this probe to the AP with similar kinetics and retaining the high substrate specificity of the native reaction. Because ketones are absent from native cell surfaces, AP-fused recombinant cell surface proteins can be tagged with the ketone probe and then specifically conjugated to hydrazide- or hydroxylamine-functionalized molecules. We demonstrate this two-stage protein labeling methodology on purified protein, in the context of mammalian cell lysate, and on epidermal growth factor receptor (EGFR) expressed on the surface of live HeLa cells. Both fluorescein and a benzophenone photoaffinity probe are incorporated, with total labeling times as short as 20 min.
Journal of the American Chemical Society | 2008
Wenhao Liu; Mark Howarth; Andrew B. Greytak; Yi Zheng; Daniel G. Nocera; Alice Y. Ting; Moungi G. Bawendi
We present a family of water-soluble quantum dots (QDs) that exhibit low nonspecific binding to cells, small hydrodynamic diameter, tunable surface charge, high quantum yield, and good solution stability across a wide pH range. These QDs are amenable to covalent modification via simple carbodiimide coupling chemistry, which is achieved by functionalizing the surface of QDs with a new class of heterobifunctional ligands incorporating dihydrolipoic acid, a short poly(ethylene glycol) (PEG) spacer, and an amine or carboxylate terminus. The covalent attachment of molecules is demonstrated by appending a rhodamine dye to form a QD-dye conjugate exhibiting fluorescence resonance energy transfer (FRET). High-affinity labeling is demonstrated by covalent attachment of streptavidin, thus enabling the tracking of biotinylated epidermal growth factor (EGF) bound to EGF receptor on live cells. In addition, QDs solubilized with the heterobifunctional ligands retain their metal-affinity driven conjugation chemistry with polyhistidine-tagged proteins. This dual functionality is demonstrated by simultaneous covalent attachment of a rhodamine FRET acceptor and binding of polyhistidine-tagged streptavidin on the same nanocrystal to create a targeted QD, which exhibits dual-wavelength emission. Such emission properties could serve as the basis for ratiometric sensing of the cellular receptors local chemical environment.
Nature Methods | 2008
Mark Howarth; Wenhao Liu; Sujiet Puthenveetil; Yi Zheng; Lisa F. Marshall; Michael M. Schmidt; K. Dane Wittrup; Moungi G. Bawendi; Alice Y. Ting
We describe a method to generate monovalent quantum dots (QDs) using agarose gel electrophoresis. We passivated QDs with a carboxy-terminated polyethylene-glycol ligand, yielding particles with half the diameter of commercial QDs, which we conjugated to a single copy of a high-affinity targeting moiety (monovalent streptavidin or antibody to carcinoembryonic antigen) to label cell-surface proteins. The small size improved access of QD-labeled glutamate receptors to neuronal synapses, and monovalency prevented EphA3 tyrosine kinase activation.
Nature Methods | 2006
Mark Howarth; Daniel J.-F. Chinnapen; Kimberly Gerrow; Pieter C. Dorrestein; Melanie R. Grandy; Neil L. Kelleher; Alaa El-Husseini; Alice Y. Ting
Streptavidin and avidin are used ubiquitously because of the remarkable affinity of their biotin binding, but they are tetramers, which disrupts many of their applications. Making either protein monomeric reduces affinity by at least 104-fold because part of the binding site comes from a neighboring subunit. Here we engineered a streptavidin tetramer with only one functional biotin binding subunit that retained the affinity, off rate and thermostability of wild-type streptavidin. In denaturant, we mixed a streptavidin variant containing three mutations that block biotin binding with wild-type streptavidin in a 3:1 ratio. Then we generated monovalent streptavidin by refolding and nickel-affinity purification. Similarly, we purified defined tetramers with two or three biotin binding subunits. Labeling of site-specifically biotinylated neuroligin-1 with monovalent streptavidin allowed stable neuroligin-1 tracking without cross-linking, whereas wild-type streptavidin aggregated neuroligin-1 and disrupted presynaptic contacts. Monovalent streptavidin should find general application in biomolecule labeling, single-particle tracking and nanotechnology.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Bijan Zakeri; Jacob O. Fierer; Emrah Celik; Emily Chittock; Ulrich Schwarz-Linek; Vincent T. Moy; Mark Howarth
Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains a domain with a spontaneous isopeptide bond between Lys and Asp. By splitting this domain and rational engineering of the fragments, we obtained a peptide (SpyTag) which formed an amide bond to its protein partner (SpyCatcher) in minutes. Reaction occurred in high yield simply upon mixing and amidst diverse conditions of pH, temperature, and buffer. SpyTag could be fused at either terminus or internally and reacted specifically at the mammalian cell surface. Peptide binding was not reversed by boiling or competing peptide. Single-molecule dynamic force spectroscopy showed that SpyTag did not separate from SpyCatcher until the force exceeded 1 nN, where covalent bonds snap. The robust reaction conditions and irreversible linkage of SpyTag shed light on spontaneous isopeptide bond formation and should provide a targetable lock in cells and a stable module for new protein architectures.
Immunity | 2002
Bin Gao; Raju Adhikari; Mark Howarth; Kimitoshi Nakamura; Marielle C. Gold; Ann B. Hill; Rai Knee; Marek Michalak; Tim Elliott
MHC class I molecules expressed in a calreticulin-deficient cell line (K42) assembled with beta 2-microglobulin (beta2-m) normally, but their subsequent loading with optimal peptides was defective. Suboptimally loaded class I molecules were released into the secretory pathway. This occurred despite the ability of newly synthesized class I to interact with the transporter associated with antigen processing (TAP) loading complex. The efficiency of peptide loading was reduced by 50%-80%, and impaired T cell recognition was observed for three out of four antigens tested. The peptide-loading function was specific to calreticulin, since the defect in K42 could be rectified by transfection with calreticulin but not a soluble form of calnexin, which shares its lectin-like activity.
Nature Protocols | 2008
Mark Howarth; Alice Y. Ting
This protocol describes a simple and efficient way to label specific cell surface proteins with biophysical probes on mammalian cells. Cell surface proteins tagged with a 15-amino acid peptide are biotinylated by Escherichia coli biotin ligase (BirA), whereas endogenous proteins are not modified. The biotin group then allows sensitive and stable binding by streptavidin conjugates. This protocol describes the optimal use of BirA and streptavidin for site-specific labeling and also how to produce BirA and monovalent streptavidin. Streptavidin is tetravalent and the cross-linking of biotinylated targets disrupts many of streptavidins applications. Monovalent streptavidin has only a single functional biotin-binding site, but retains the femtomolar affinity, low off-rate and high thermostability of wild-type streptavidin. Site-specific biotinylation and streptavidin staining take only a few minutes, while expression of BirA takes 4 d and expression of monovalent streptavidin takes 8 d.
Cancer Research | 2010
Tamara Aleksic; Meenali M. Chitnis; Olga V. Perestenko; Shan Gao; Peter H. Thomas; Gareth D. H. Turner; Andrew Protheroe; Mark Howarth; Valentine M. Macaulay
The type 1 insulin-like growth factor receptor (IGF-1R) is a transmembrane glycoprotein composed of two extracellular alpha subunits and two beta subunits with tyrosine kinase activity. The IGF-1R is frequently upregulated in cancers and signals from the cell surface to promote proliferation and cell survival. Recent attention has focused on the IGF-1R as a target for cancer treatment. Here, we report that the nuclei of human tumor cells contain IGF-1R, detectable using multiple antibodies to alpha- and beta-subunit domains. Cell-surface IGF-1R translocates to the nucleus following clathrin-mediated endocytosis, regulated by IGF levels. The IGF-1R is unusual among transmembrane receptors that undergo nuclear import, in that both alpha and beta subunits traffic to the nucleus. Nuclear IGF-1R is phosphorylated in response to ligand and undergoes IGF-induced interaction with chromatin, suggesting direct engagement in transcriptional regulation. The IGF dependence of these phenomena indicates a requirement for the receptor kinase, and indeed, IGF-1R nuclear import and chromatin binding can be blocked by a novel IGF-1R kinase inhibitor. Nuclear IGF-1R is detectable in primary renal cancer cells, formalin-fixed tumors, preinvasive lesions in the breast, and nonmalignant tissues characterized by a high proliferation rate. In clear cell renal cancer, nuclear IGF-1R is associated with adverse prognosis. Our findings suggest that IGF-1R nuclear import has biological significance, may contribute directly to IGF-1R function, and may influence the efficacy of IGF-1R inhibitory drugs.
Nature Methods | 2010
Claire E Chivers; Estelle Crozat; Calvin Chu; Vincent T. Moy; David J. Sherratt; Mark Howarth
Streptavidin binds biotin conjugates with exceptional stability but dissociation does occur, limiting its use in imaging, DNA amplification and nanotechnology. We identified a mutant streptavidin, traptavidin, with more than tenfold slower biotin dissociation, increased mechanical strength and improved thermostability; this resilience should enable diverse applications. FtsK, a motor protein important in chromosome segregation, rapidly displaced streptavidin from biotinylated DNA, whereas traptavidin resisted displacement, indicating the force generated by Ftsk translocation.
Journal of the American Chemical Society | 2010
Bijan Zakeri; Mark Howarth
Peptides and synthetic peptide-like molecules are powerful tools for analysis and control of biological function. One major limitation of peptides is the instability of their interactions with biomolecules, because of the limited accessible surface area for noncovalent interactions and the intrinsic flexibility of peptides. Peptide tags are nonetheless fundamental for protein detection and purification, because their small size minimizes the perturbation to protein function. Here we have designed a 16 amino acid peptide that spontaneously forms an amide bond to a protein partner, via reaction between lysine and asparagine side chains. This depended upon splitting a pilin subunit from a human pathogen, Streptococcus pyogenes, which usually undergoes intramolecular amide bond formation to impart mechanical and proteolytic stability to pili. Reaction of the protein partner was able to proceed to 98% conversion. The amide bond formation was independent of redox state and occurred at pH 5-8. The reaction was efficient in phosphate buffered saline and a wide range of biological buffers. Surprisingly, amide bond formation occurred at a similar rate at 4 and 37 degrees C. Both peptide and protein partners are composed of the regular 20 amino acids and reconstituted efficiently inside living E. coli. Labeling also showed high specificity on the surface of mammalian cells. Irreversible targeting of a peptide tag may have application in bioassembly, in cellular imaging, and to lock together proteins subject to high biological forces.