Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark J. Bailey is active.

Publication


Featured researches published by Mark J. Bailey.


Chemico-Biological Interactions | 2003

Acyl glucuronide reactivity in perspective: biological consequences.

Mark J. Bailey; R. G. Dickinson

The metabolic conjugation of exogenous and endogenous carboxylic acid substrates with endogenous glucuronic acid, mediated by the uridine diphosphoglucuronosyl transferase (UGT) superfamily of enzymes, leads to the formation of acyl glucuronide metabolites. Since the late 1970s, acyl glucuronides have been increasingly identified as reactive electrophilic metabolites, capable of undergoing three reactions: intramolecular rearrangement, hydrolysis, and intermolecular reactions with proteins leading to covalent drug-protein adducts. This essential dogma has been accepted for over a decade. The key question proposed by researchers, and now the pharmaceutical industry, is: does or can the covalent modification of endogenous proteins, mediated by reactive acyl glucuronide metabolites, lead to adverse drug reactions, perhaps idiosyncratic in nature? This review evaluates the evidence for acyl glucuronide-derived perturbation of homeostasis, particularly that which might result from the covalent modification of endogenous proteins and other macromolecules. Because of the availability of acyl glucuronides for test tube/in vitro experiments, there is now a substantial literature documenting their rearrangement, hydrolysis and covalent modification of proteins in vitro. It is certain from in vitro experiments that serum albumin, dipeptidyl peptidase IV, tubulin and UGTs are covalently modified by acyl glucuronides. However, these in vitro experiments have been specifically designed to amplify any interference with a biological process in order to find biological effects. The in vivo situation is not at all clear. Certainly it must be concluded that all humans taking carboxylate drugs that form reactive acyl glucuronides will form covalent drug-protein adducts, and it must also be concluded that this in itself is normally benign. However, there is enough in vivo evidence implicating acyl glucuronides, which, when backed up by in vivo circumstantial and documented in vitro evidence, supports the view that reactive acyl glucuronides may initiate toxicity/immune responses. In summary, though acyl glucuronide-derived covalent modification of endogenous macromolecules is well-defined, the work ahead needs to provide detailed links between such modification and its possible biological consequences.


Chemico-Biological Interactions | 1998

Zomepirac acyl glucuronide covalently modifies tubulin in vitro and in vivo and inhibits its assembly in an in vitro system

Mark J. Bailey; Simon Worrall; J. de Jersey; R. G. Dickinson

Drugs possessing a carboxylate functional group usually form acyl glucuronides as major metabolites. These electrophilic metabolites can undergo several spontaneous reactions, including covalent adduct formation with proteins. The present study examined whether covalent adducts were formed with microtubular protein (MTP, 85%, alpha/beta-tubulin) and whether this influenced its ability to assemble into microtubules. Bovine brain microtubular protein (MTP) was purified by assembly-disassembly cycles and incubated with the nonsteroidal anti-inflammatory drug (NSAID) zomepirac (ZP), its acyl glucuronide (ZAG) and rearrangement isomers (iso-ZAG) at various concentrations for 2 h at room temperature and pH 7.5. Assembly was monitored by change in turbidity (increase in absorbance at 340 nm). Both ZAG and iso-ZAG caused dose-dependent inhibition of assembly (50% inhibition at about 1 mM), while ZP caused modest inhibition (< 50% inhibition at 4 mM). In a slightly different system, incubation of performed microtubules with 4 mM ZAG caused about 35% inhibition of reassembly ability, while modification of MTP under similar conditions resulted in about 85% reduction of assembly ability. Immunoblotting with a ZP antiserum showed that ZAG and iso-ZAG covalently modified MTP in a dose-dependent manner, while ZP itself caused no modification. Tubulin and many minor proteins comprising MTP were modified. ZP-modified tubulin was shown to be present in the cytosol of livers from rats dosed twice daily for 3 days with ZP at 50 mg/kg, using a sandwich ELISA with ZP and tubulin antisera. Whether any perturbation of microtubule assembly occurs in vivo as a result of this in vivo modification is currently under investigation.


Journal of Molecular Endocrinology | 2012

The effect of pre-existing maternal obesity on the placental proteome: two-dimensional difference gel electrophoresis coupled with mass spectrometry.

Karen Oliva; Gillian Barker; Clyde Riley; Mark J. Bailey; Michael Permezel; Gregory E. Rice; Martha Lappas

Our aim was to study the protein expression profiles of placenta obtained from lean and obese pregnant women with normal glucose tolerance at the time of term Caesarean section. We used two-dimensional difference gel electrophoresis (2D-DIGE), utilising narrow-range immobilised pH gradient strips that encompassed the broad pH range of 4-5 and 5-6, followed by MALDI-TOF mass spectrometry of selected protein spots. Western blot and quantitative RT-PCR (qRT-PCR) analyses were performed to validate representative findings from the 2D-DIGE analysis. Eight proteins were altered (six down-regulated and two up-regulated on obese placentas). Annexin A5 (ANXA5), ATP synthase subunit beta, mitochondria (ATPB), brain acid soluble protein 1 (BASP1), ferritin light chain (FTL), heterogeneous nuclear ribonucleoprotein C (HNRPC) and vimentin (VIME) were all lower in obese patients. Alpha-1-antitrypsin (A1AT) and stress-70 protein, mitochondrial (GRP75) were higher in obese patients. Western blot analysis of ANXA5, ATPB, FTL, VIME, A1AT and GRP75 confirmed the findings from the 2D-DIGE analysis. For brain acid soluble protein 1 and HNRPC, qRT-PCR analysis also confirmed the findings from the 2D-DIGE analysis. Immunohistochemical analysis was also used to determine the localisation of the proteins in human placenta. In conclusion, proteomic analysis of placenta reveals differential expression of several proteins in patients with pre-existing obesity. These proteins are implicated in a variety of cellular functions such as regulation of growth, cytoskeletal structure, oxidative stress, inflammation, coagulation and apoptosis. These disturbances may have significant implications for fetal growth and development.


Life Sciences | 2002

Inhibition of tubulin assembly and covalent binding to microtubular protein by valproic acid glucuronide in vitro

Graeme R. Cannell; Mark J. Bailey; R. G. Dickinson

Acyl glucuronides are reactive metabolites of carboxylate drugs, able to undergo a number of reactions in vitro and in vivo, including isomerization via intramolecular rearrangement and covalent adduct formation with proteins. The intrinsic reactivity of a particular acyl glucuronide depends upon the chemical makeup of the drug moiety. The least reactive acyl glucuronide yet reported is valproic acid acyl glucuronide (VPA-G), which is the major metabolite of the antiepileptic agent valproic acid (VPA). In this study, we showed that both VPA-G and its rearrangement isomers (iso-VPA-G) interacted with bovine brain microtubular protein (MTP, comprised of 85% tubulin and 15% microtubule associated proteins [MAPs]). MTP was incubated with VPA, VPA-G and iso-VPA-G for 2 h at room temperature and pH 7.5 at various concentrations up to 4 mM. VPA-G and iso-VPA-G caused dose-dependent inhibition of assembly of MTP into microtubules, with 50% inhibition (IC(50)) values of 1.0 and 0.2 mM respectively, suggesting that iso-VPA-G has five times more inhibitory potential than VPA-G. VPA itself did not inhibit microtubule formation except at very high concentrations (> or =2 mM). Dialysis to remove unbound VPA-G and iso-VPA-G (prior to the assembly assay) diminished inhibition while not removing it. Comparison of covalent binding of VPA-G and iso-VPA-G (using [14C]-labelled species) showed that adduct formation was much greater for iso-VPA-G. When [14C]-iso-VPA-G was reacted with MTP in the presence of sodium cyanide (to stabilize glycation adducts), subsequent separation into tubulin and MAPs fractions by ion exchange chromatography revealed that 78 and 22% of the covalent binding occurred with the MAPs and tubulin fractions respectively. These experiments support the notion of both covalent and reversible binding playing parts in the inhibition of microtubule formation from MTP (though the acyl glucuronide of VPA is less important than its rearrangement isomers in this regard), and that both tubulin and (perhaps more importantly) MAPs form adducts with acyl glucuronides.


Journal of Endocrinology | 2013

2D-DIGE to identify proteins associated with gestational diabetes in omental adipose tissue

Karen Oliva; Gillian Barker; Gregory E. Rice; Mark J. Bailey; Martha Lappas

Gestational diabetes mellitus (GDM) is a significant risk factor for the type 2 diabetes epidemic in many populations. Maternal adipose tissue plays a central role in the pathophysiology of GDM. Thus, the aim of this study was to determine the effect of GDM on the proteome of adipose tissue. Omental adipose tissue was obtained at the time of term Caesarean section from women with normal glucose tolerance (NGT) or GDM. 2D-difference gel electrophoresis (DIGE), followed by mass spectrometry, was used to identify protein spots (n = 6 patients per group). Western blotting was used for confirmation of six of the spot differences (n = 6 patients per group). We found 14 proteins that were differentially expressed between NGT and GDM adipose tissue (≥ 1.4-fold, P < 0.05). GDM was associated with an up-regulation of four proteins: collagen alpha-2(VI) chain (CO6A2 (COL6A2)), fibrinogen beta chain (FIBB (FGB)), lumican (LUM) and S100A9. On the other hand, a total of ten proteins were found to be down-regulated in adipose tissue from GDM women. These were alpha-1-antitrypsin (AIAT (SERPINA 1)), annexin A5 (ANXA5), fatty acid-binding protein, adipocyte (FABP4), glutathione S-transferase P (GSTP (GSTP1)), heat-shock protein beta-1 (HSP27 (HSPB1)), lactate dehydrogenase B chain (LDHB), perilipin-1 (PLIN1), peroxiredoxin-6 (PRX6 (PRDX6)), selenium-binding protein 1 (SBP1) and vinculin (VINC (VCL)). In conclusion, proteomic analysis of omental fat reveals differential expression of several proteins in GDM patients and NGT pregnant women. This study revealed differences in expression of proteins that are involved in inflammation, lipid and glucose metabolism and oxidative stress and added further evidence to support the role of visceral adiposity in the pathogenesis of GDM.


Proteomics Clinical Applications | 2012

Identification of ovarian cancer-associated proteins in symptomatic women: A novel method for semi-quantitative plasma proteomics

Kristy Shield-Artin; Mark J. Bailey; Karen Oliva; Ana K. Liovic; Gillian Barker; Nicole L. Dellios; Simone Reisman; Mustafa Ayhan; Gregory E. Rice

To evaluate the utility of an enhanced biomarker discovery approach in order to identify potential biomarkers relevant to ovarian cancer detection.


Journal of Carcinogenesis | 2013

Stage-specific analysis of plasma protein profiles in ovarian cancer: difference in-gel electrophoresis analysis of pooled clinical samples

Mark J. Bailey; Kristy Shield-Artin; Karen Oliva; Mustafa Ayhan; Simone Reisman; Gregory E. Rice

Introduction: Ovarian cancer is the leading cause of death from gynecological cancer. Non-specific symptoms early in disease and the lack of specific biomarkers hinder early diagnosis. Multi-marker blood screening tests have shown promise for improving identification of early stage disease; however, available tests lack sensitivity, and specificity. Materials and Methods: In this study, pooled deeply-depleted plasma from women with Stage 1, 2 or 3 ovarian cancer and healthy controls were used to compare the 2-dimensional gel electrophoresis (2-DE) protein profiles and identify potential novel markers of ovarian cancer progression. Results/Discussion: Stage-specific variation in biomarker expression was observed. For example, apolipoprotein A1 expression is relatively low in control and Stage 1, but shows a substantial increase in Stage 2 and 3, thus, potential of utility for disease confirmation rather than early detection. A better marker for early stage disease was tropomyosin 4 (TPM4). The expression of TPM4 increased by 2-fold in Stage 2 before returning to “normal” levels in Stage 3 disease. Multiple isoforms were also identified for some proteins and in some cases, displayed stage-specific expression. An interesting example was fibrinogen alpha, for which 8 isoforms were identified. Four displayed a moderate increase at Stage 1 and a substantial increase for Stages 2 and 3 while the other 4 showed only moderate increases. Conclusion: Herein is provided an improved summary of blood protein profiles for women with ovarian cancer stratified by stage.


Journal of Pharmacological and Toxicological Methods | 1999

Limitations of hepatocytes and liver homogenates in modelling in vivo formation of acyl glucuronide-derived drug–protein adducts

Mark J. Bailey; R. G. Dickinson

The covalent binding of drugs or their metabolites to proteins is of increasing interest in the investigation of the toxicity of these compounds. Recent attention on biological consequences of protein adduct formation with carboxylate drugs, derived via their reactive acyl glucuronide metabolites, has focussed on liver tissue. Although the intact animal represents undisturbed hepatic physiology, other hepatic models can offer advantages, e.g., multiple experiments from a single liver. In this study we set out to compare the patterns of covalent binding of zomepirac (ZP) to proteins in the livers of intact rats, isolated rat hepatocytes (in culture or suspension), and in rat liver homogenates. Rats were dosed i.v. with 25 mg ZP/kg, and their livers were removed 3 h later. Isolated hepatocytes or liver homogenates were exposed to ZP at 100 microg/mL for 3 h at 37 degrees C. Liver homogenates were exposed to ZP and also zomepirac acyl glucuronide (ZAG) at 100 microg ZP equivalents/mL for 3 h at 37 degrees C. Covalent binding of ZP species was examined by SDS-PAGE and Western blotting with a polyclonal ZP antiserum. In livers from dosed animals, the strongest staining appeared at about 110120, 140, and 200 kDa. Few similarities existed with the results from isolated hepatocytes and, not surprisingly, liver homogenates. Only the 200-kDa band was common to all treatments. Many proteins seemed to be modified, at least to some extent. The differences in major bands are most likely caused by the loss of liver and hepatocyte architecture. The variability across different model systems in respect to covalent binding to hepatic proteins emphasizes the need for care in interpretation of results.


Clinical and translational medicine | 2012

Peptidomic profiles of post myocardial infarction rats affinity depleted plasma using matrix-assisted laser desorption/ionization time of flight (MALDI-ToF) mass spectrometry.

B. Wang; Simone Reisman; Mark J. Bailey; A. Kompa; Mustafa Ayhan; Henry Krum; Gregory E. Rice

BackgroundDespite major advances in drug development, effective cardiovascular therapies and suitable cardiovascular biomarkers remain limited. The aim of this study was to leverage mass spectrometry (MS) based peptide profiling strategies to identify changes that occur in peptidomic profiles of rat plasma following coronary artery ligation generated myocardial infarction (MI).MethodsOne week after MI, rats were randomized to receive either an ACE inhibitor (ramipril, Ram-1 mg/kg/day), or vehicle (Veh) for 12 weeks. Echocardiography and hemodynamic measurements were made before sacrifice and plasma collection. High abundance proteins were depleted with affinity capture before MS profiling. Differentially expressed peptide ions were identified using proprietary software (ClinProtTools).ResultsMI increased heart/body weight (18%), lung/body weight (56%), and left ventricular (LV) end diastolic pressure (LVEDP, 247%); and significantly reduced percentage fractional shortening (FS, 75%) and rate of pressure rise in the LV (dP/dtmax, 20%). Ram treatment significantly attenuated the changes in LVEDP (61%) and FS (27%). Analysis of MALDI-ToF generated mass spectra demonstrated that peptide ions 1271, 1878, 1955, 2041 and 2254 m/z were consistently decreased by Ram treatment (p < 0.001) and thus may be associated with the agent’s therapeutic effects. Among peptides that were significantly changed, synapsin-2, adenomatous polyposis coli protein and transcription factor jun-D were identified as significantly reduced by Ram treatment.ConclusionsThis approach allows us to screen for potential biomarkers in a window of the blood proteome that previously has been difficult to access. The data obtained from such an approach may potentially useful in prognosis, diagnosis, and monitoring of treatment response.


Reproductive Sciences | 2011

The identification of differentially expressed proteins associated with human labour at term: 1D and 2D differential in gel electrophoresis (DIGE) coupled with mass spectrometry

Martha Lappas; Karen Oliva; Mark J. Bailey; Michael Permezel; Greg Rice

Plenary Session: President’s New Investigator (Thursday, 3/24/2011, 9:00 AM 10:00 AM) Scientifi c Abstracts Reproductive Sciences Vol. 18, No. 4 (Supplement), March 2011 71A

Collaboration


Dive into the Mark J. Bailey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory E. Rice

Royal Brisbane and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Karen Oliva

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martha Lappas

Mercy Hospital for Women

View shared research outputs
Top Co-Authors

Avatar

Mustafa Ayhan

Baker IDI Heart and Diabetes Institute

View shared research outputs
Top Co-Authors

Avatar

Simone Reisman

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Kristy Shield-Artin

Baker IDI Heart and Diabetes Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge