Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark J. Burchell is active.

Publication


Featured researches published by Mark J. Burchell.


Science | 2006

Organics captured from comet 81P/Wild 2 by the Stardust spacecraft

Scott A. Sandford; Jérôme Aléon; Conel M. Od. Alexander; Tohru Araki; Sas̆a Bajt; G. A. Baratta; Janet Borg; John P. Bradley; D. E. Brownlee; John Robert Brucato; Mark J. Burchell; Henner Busemann; Anna L. Butterworth; Simon J. Clemett; George D. Cody; L. Colangeli; George Cooper; Louis D'Hendecourt; Zahia Djouadi; Jason P. Dworkin; Gianluca Ferrini; Holger Fleckenstein; G. J. Flynn; Ian A. Franchi; Marc Douglas Fries; Mary K. Gilles; Daniel P. Glavin; Matthieu Gounelle; Faustine Grossemy; Chris Jacobsen

Organics found in comet 81P/Wild 2 samples show a heterogeneous and unequilibrated distribution in abundance and composition. Some organics are similar, but not identical, to those in interplanetary dust particles and carbonaceous meteorites. A class of aromatic-poor organic material is also present. The organics are rich in oxygen and nitrogen compared with meteoritic organics. Aromatic compounds are present, but the samples tend to be relatively poorer in aromatics than are meteorites and interplanetary dust particles. The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage. Although the variable extent of modification of these materials by impact capture is not yet fully constrained, a diverse suite of organic compounds is present and identifiable within the returned samples.


Science | 2006

Impact Features on Stardust: Implications for Comet 81P/Wild 2 Dust

Friedrich Hörz; Janet Borg; John P. Bradley; John C. Bridges; D. E. Brownlee; Mark J. Burchell; Miaofang Chi; Mark J. Cintala; Zurong Dai; Zahia Djouadi; G. Dominguez; Thanasis E. Economou; Sam A. J. Fairey; Christine Floss; Ian A. Franchi; Giles A. Graham; Simon F. Green; Philipp R. Heck; Peter Hoppe; Joachim Huth; Hope A. Ishii; Anton T. Kearsley; J. Kissel; J. Leitner; Hugues Leroux; K. K. Marhas; Keiko Messenger; Craig S. Schwandt; Thomas A. See; Christopher J. Snead

Particles emanating from comet 81P/Wild 2 collided with the Stardust spacecraft at 6.1 kilometers per second, producing hypervelocity impact features on the collector surfaces that were returned to Earth. The morphologies of these surprisingly diverse features were created by particles varying from dense mineral grains to loosely bound, polymineralic aggregates ranging from tens of nanometers to hundreds of micrometers in size. The cumulative size distribution of Wild 2 dust is shallower than that of comet Halley, yet steeper than that of comet Grigg-Skjellerup.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1992

The Crystal Barrel spectrometer at LEAR

E. Aker; C. Amsler; I. Augustin; C.A. Baker; B. M. Barnett; C.J. Batty; R. Beckmann; P. Birien; J. Bistirlich; Philipp Blum; R. Bossingham; H. Bossy; K. Braune; D.V. Bugg; Mark J. Burchell; T. Case; S. Cierjacks; K.M. Crowe; K. Dederichs; M. Doser; W. Dünnweber; H. Emerich; D. Engelhardt; M. Faessler; C. Felix; G. Folger; J. Friedrich; R. Hackmann; R.P. Haddock; H. Hammer

The crystal Barrel spectrometer used at LEAR, CERN to study the products of pd annihilations is described. A 1380 element array of Csl crystals measures photons from the decay of π0, η, η′ and ω mesons. A segmented drift chamber in a 1.5T magnetic field is used to identify and measure charged particles. A fast on-line trigger on charged and neutral multiplicities and on the invariant mass of secondary particles is available. The performance of the detector is discussed.


Measurement Science and Technology | 1999

Hypervelocity impact studies using the 2 MV Van de Graaff accelerator and two-stage light gas gun of the University of Kent at Canterbury

Mark J. Burchell; M. J. Cole; J. A. M. McDonnell; John C. Zarnecki

The hypervelocity impact facilities of the University of Kent are described. They comprise a 2 MV Van de Graaff accelerator for the electrostatic acceleration of dust particles (mass and velocities ) and a two-stage light gas gun firing millimetre-sized particles at . Results for impact ionization studies using iron dust accelerated in the Van de Graaff and hitting a variety of metal targets (gold, silver, indium, iron, rhodium and molybdenum) are presented. Over the range , the ionization yields are found to be similar to within a factor of 20 at low velocity and converge to within a factor of five at high velocity. The light gas gun is used to investigate the volumes of craters in metal targets for impacts of 1 mm diameter stainless steel spheres on aluminium at velocities in the range . For normal incidence the crater volume scales with the square of the impact velocity. For oblique impacts at a fixed velocity it is found that the crater volume scales with the cosine of the impact angle.


Science | 2008

Comparison of Comet 81P/Wild 2 Dust with Interplanetary Dust from Comets

Hope A. Ishii; John P. Bradley; Zu Rong Dai; Miaofang Chi; Anton T. Kearsley; Mark J. Burchell; Nigel D. Browning; Frank Molster

The Stardust mission returned the first sample of a known outer solar system body, comet 81P/Wild 2, to Earth. The sample was expected to resemble chondritic porous interplanetary dust particles because many, and possibly all, such particles are derived from comets. Here, we report that the most abundant and most recognizable silicate materials in chondritic porous interplanetary dust particles appear to be absent from the returned sample, indicating that indigenous outer nebula material is probably rare in 81P/Wild 2. Instead, the sample resembles chondritic meteorites from the asteroid belt, composed mostly of inner solar nebula materials. This surprising finding emphasizes the petrogenetic continuum between comets and asteroids and elevates the astrophysical importance of stratospheric chondritic porous interplanetary dust particles as a precious source of the most cosmically primitive astromaterials.


Science | 2006

Infrared Spectroscopy of Comet 81P/Wild 2 Samples Returned by Stardust

Lindsay P. Keller; Sasa Bajt; G. A. Baratta; Janet Borg; John P. Bradley; D. E. Brownlee; Henner Busemann; John Robert Brucato; Mark J. Burchell; L. Colangeli; Louis D'Hendecourt; Zahia Djouadi; Gianluca Ferrini; G. J. Flynn; Ian A. Franchi; Marc Douglas Fries; Monica M. Grady; Giles A. Graham; Faustine Grossemy; Anton T. Kearsley; Graciela Matrajt; Keiko Nakamura-Messenger; V. Mennella; Larry R. Nittler; M. E. Palumbo; Frank J. Stadermann; Peter Tsou; Alessandra Rotundi; Scott A. Sandford; Christopher J. Snead

Infrared spectra of material captured from comet 81P/Wild 2 by the Stardust spacecraft reveal indigenous aliphatic hydrocarbons similar to those in interplanetary dust particles thought to be derived from comets, but with longer chain lengths than those observed in the diffuse interstellar medium. Similarly, the Stardust samples contain abundant amorphous silicates in addition to crystalline silicates such as olivine and pyroxene. The presence of crystalline silicates in Wild 2 is consistent with mixing of solar system and interstellar matter. No hydrous silicates or carbonate minerals were detected, which suggests a lack of aqueous processing of Wild 2 dust.


Physics Letters B | 1994

Observation of two JPC=0++ isoscalar resonances at 1365 and 1520 MeV

V.V. Anisovich; D.S. Armstrong; I. Augustin; C. A. Baker; B. M. Barnett; C.J. Batty; K. Beuchert; P. Birien; Philipp Blum; R. Bossingham; K. Braune; J. Brose; D.V. Bugg; Mark J. Burchell; T. Case; A. Cooper; K.M. Crowe; T. Degener; H.P. Dietz; M. Doser; W. Dünnweber; D. Engelhardt; M. Englert; M. Faessler; C. Felix; G. Folger; R. Hackmann; R.P. Haddock; F.-H. Heinsius; N. P. Hessey

From a simultaneous analysis of data on pp → π0π0π0 and pp → ηηπ0 at rest, two I = 0, JPC = 0++ resonances are identified above 1 GeV. The first has mass M = 1365−55+20 MeV and width г = 268 ± 70 MeV, close to the ƒ0(1400) of the Particle Data Group. The second has M = 1520 ± 25 MeV, г = 148−25+20 MeV.


Physics Letters B | 1995

High-statistics study of f0(1500) decay into π0π0

C. Amsler; C. J. Batty; D. Engelhardt; R.P. Haddock; H. Stock; J. Brose; K.M. Crowe; M. Suffert; D. Walther; D. Jamnik; C. Kolo; T. Degener; R. Landua; H. Kalinowsky; F. Loser; N. P. Hessey; E. Schäfer; C. Strassburger; L. Montanet; J. Salk; E. Klempt; O. Cramer; W. Dünnweber; M. Merkel; U. Strohbusch; S. Ravndal; Mark J. Burchell; R. Bossingham; S. Spanier; M. Kunze

Abstract A partial-wave analysis of the reaction p p →π 0 π 0 π 0 has been performed using a high-quality high-statistics data set of 712 000 events. In addition to the f0(975) and f0(1300), the scalar resonance with mass m = (1500 ± 15) MeV and width Γ = (120 ± 25) MeV is necessary to describe the data.


Physics Letters B | 1994

Observation of a new IG(JPC)=1−(0++) resonance at 1450 MeV

C. Amsler; V.V. Anisovich; D.S. Armstrong; I. Augustin; C. A. Baker; B.M. Barnett; C.J. Batty; K. Beuchert; P. Birien; Philipp Blum; R. Bossingham; K. Braune; J. Brose; D.V. Bugg; Mark J. Burchell; T. Case; S. U. Chung; A. Cooper; K.M. Crowe; T. Degener; H.P. Dietz; S. von Dombrowski; M. Doser; W. Dünnweber; D. Engelhardt; M. Englert; M. Faessler; C. Felix; R. Hackmann; R.P. Haddock

Abstract A new IG=1− JPC=0++πη resonance is observed in pp annihilation at rest into π0π0η. It has a mass M=(1450±40)MeV and a width Γ=(270±40)MeV.


Science | 2014

Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft

Andrew J. Westphal; Rhonda M. Stroud; Hans A. Bechtel; Frank E. Brenker; Anna L. Butterworth; G. J. Flynn; D. Frank; Zack Gainsforth; Jon K. Hillier; Frank Postberg; Alexandre S. Simionovici; Veerle J. Sterken; Larry R. Nittler; Carlton C. Allen; David P. Anderson; Asna Ansari; Sasa Bajt; Nabil Bassim; John C. Bridges; D. E. Brownlee; Mark J. Burchell; Manfred Burghammer; Hitesh Changela; Peter Cloetens; Andrew M. Davis; Ryan Doll; Christine Floss; E. Grün; Philipp R. Heck; Peter Hoppe

Can you spot a speck of space dust? NASAs Stardust spacecraft has been collecting cosmic dust: Aerogel tiles and aluminum foil sat for nearly 200 days in the interstellar dust stream before returning to Earth. Citizen scientists identified most of the 71 tracks where particles were caught in the aerogel, and scanning electron microscopy revealed 25 craterlike features where particles punched through the foil. By performing trajectory and composition analysis, Westphal et al. report that seven of the particles may have an interstellar origin. These dust particles have surprisingly diverse mineral content and structure as compared with models of interstellar dust based on previous astronomical observations. Science, this issue p. 786 Analysis of seven particles captured by aerogel and foil reveals diverse characteristics not conforming to a single model. Seven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory. The seven candidate interstellar particles are diverse in elemental composition, crystal structure, and size. The presence of crystalline grains and multiple iron-bearing phases, including sulfide, in some particles indicates that individual interstellar particles diverge from any one representative model of interstellar dust inferred from astronomical observations and theory.

Collaboration


Dive into the Mark J. Burchell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. E. Brownlee

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Christine Floss

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. J. Flynn

State University of New York at Plattsburgh

View shared research outputs
Top Co-Authors

Avatar

J. Drinkard

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Janet Borg

University of Paris-Sud

View shared research outputs
Researchain Logo
Decentralizing Knowledge