Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark J. Koenigsknecht is active.

Publication


Featured researches published by Mark J. Koenigsknecht.


Nature Communications | 2014

Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection

Casey M. Theriot; Mark J. Koenigsknecht; Paul E. Carlson; Gabrielle E. Hatton; Adam M. Nelson; Bo Li; Gary B. Huffnagle; Jun Li; Vincent B. Young

Antibiotics can have significant and long lasting effects on the gastrointestinal tract microbiota, reducing colonization resistance against pathogens including Clostridium difficile. Here we show that antibiotic treatment induces substantial changes in the gut microbial community and in the metabolome of mice susceptible to C. difficile infection. Levels of secondary bile acids, glucose, free fatty acids, and dipeptides decrease, whereas those of primary bile acids and sugar alcohols increase, reflecting the modified metabolic activity of the altered gut microbiome. In vitro and ex vivo analyses demonstrate that C. difficile can exploit specific metabolites that become more abundant in the mouse gut after antibiotics, including primary bile acid taurocholate for germination, and carbon sources mannitol, fructose, sorbitol, raffinose and stachyose for growth. Our results indicate that antibiotic-mediated alteration of the gut microbiome converts the global metabolic profile to one that favors C. difficile germination and growth.


Infection and Immunity | 2012

Suppression of Clostridium difficile in the Gastrointestinal Tracts of Germfree Mice Inoculated with a Murine Isolate from the Family Lachnospiraceae

Angela E. Reeves; Mark J. Koenigsknecht; Ingrid L. Bergin; Vincent B. Young

ABSTRACT The indigenous microbial community of the gastrointestinal (GI) tract determines susceptibility to Clostridium difficile colonization and disease. Previous studies have demonstrated that antibiotic-treated mice challenged with C. difficile either developed rapidly lethal C. difficile infection or were stably colonized with mild disease. The GI microbial community of animals with mild disease was dominated by members of the bacterial family Lachnospiraceae, while the gut community in moribund animals had a predominance of Escherichia coli. We investigated the roles of murine Lachnospiraceae and E. coli strains in colonization resistance against C. difficile in germfree mice. Murine Lachnospiraceae and E. coli isolates were cultured from wild-type mice. The ability of each of these isolates to interfere with C. difficile colonization was tested by precolonizing germfree mice with these bacteria 4 days prior to experimental C. difficile challenge. Mice precolonized with a murine Lachnospiraceae isolate, but not those colonized with E. coli, had significantly decreased C. difficile colonization, lower intestinal cytotoxin levels and exhibited less severe clinical signs and colonic histopathology. Infection of germfree mice or mice precolonized with E. coli with C. difficile strain VPI 10463 was uniformly fatal by 48 h, but only 20% mortality was seen at 2 days in mice precolonized with the Lachnospiraceae isolate prior to challenge with VPI 10463. These findings confirm that a single component of the GI microbiota, a murine Lachnospiraceae isolate, could partially restore colonization resistance against C. difficile. Further study of the members within the Lachnospiraceae family could lead to a better understanding of mechanisms of colonization resistance against C. difficile and novel therapeutic approaches for the treatment and prevention of C. difficile infection.


Nature Immunology | 2016

Gut microbiome–derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease

Nathan Mathewson; Robert R. Jenq; Anna V. Mathew; Mark J. Koenigsknecht; Alan M. Hanash; Tomomi Toubai; Katherine Oravecz-Wilson; Shin Rong Wu; Yaping Sun; Corinne Rossi; Jaeman Byun; Yusuke Shono; Caroline A. Lindemans; Marco Calafiore; Thomas C. Schmidt; Kenya Honda; Vincent B. Young; Subramaniam Pennathur; Marcel R.M. van den Brink; Pavan Reddy

The effect of alterations in intestinal microbiota on microbial metabolites and on disease processes such as graft-versus-host disease (GVHD) is not known. Here we carried out an unbiased analysis to identify previously unidentified alterations in gastrointestinal microbiota–derived short-chain fatty acids (SCFAs) after allogeneic bone marrow transplant (allo-BMT). Alterations in the amount of only one SCFA, butyrate, were observed only in the intestinal tissue. The reduced butyrate in CD326+ intestinal epithelial cells (IECs) after allo-BMT resulted in decreased histone acetylation, which was restored after local administration of exogenous butyrate. Butyrate restoration improved IEC junctional integrity, decreased apoptosis and mitigated GVHD. Furthermore, alteration of the indigenous microbiota with 17 rationally selected strains of high butyrate–producing Clostridia also decreased GVHD. These data demonstrate a heretofore unrecognized role of microbial metabolites and suggest that local and specific alteration of microbial metabolites has direct salutary effects on GVHD target tissues and can mitigate disease severity.


Infection and Immunity | 2015

Dynamics and Establishment of Clostridium difficile Infection in the Murine Gastrointestinal Tract

Mark J. Koenigsknecht; Casey M. Theriot; Ingrid L. Bergin; Cassie A. Schumacher; Patrick D. Schloss; Vincent B. Young

ABSTRACT Clostridium difficile infection (CDI) following antibiotic therapy is a major public health threat. While antibiotic disruption of the indigenous microbiota underlies the majority of cases of CDI, the early dynamics of infection in the disturbed intestinal ecosystem are poorly characterized. This study defines the dynamics of infection with C. difficile strain VPI 10463 throughout the gastrointestinal (GI) tract using a murine model of infection. After inducing susceptibility to C. difficile colonization via antibiotic administration, we followed the dynamics of spore germination, colonization, sporulation, toxin activity, and disease progression throughout the GI tract. C. difficile spores were able to germinate within 6 h postchallenge, resulting in the establishment of vegetative bacteria in the distal GI tract. Spores and cytotoxin activity were detected by 24 h postchallenge, and histopathologic colitis developed by 30 h. Within 36 h, all infected mice succumbed to infection. We correlated the establishment of infection with changes in the microbiota and bile acid profile of the small and large intestines. Antibiotic administration resulted in significant changes to the microbiota in the small and large intestines, as well as a significant shift in the abundance of primary and secondary bile acids. Ex vivo analysis suggested the small intestine as the site of spore germination. This study provides an integrated understanding of the timing and location of the events surrounding C. difficile colonization and identifies potential targets for the development of new therapeutic strategies.


Nature Immunology | 2017

NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth

Liang Chen; Justin E. Wilson; Mark J. Koenigsknecht; Wei Chun Chou; Stephanie A. Montgomery; Agnieszka D. Truax; W. June Brickey; Christopher D. Packey; Nitsan Maharshak; Glenn K. Matsushima; Scott E. Plevy; Vincent B. Young; R. Balfour Sartor; Jenny P.Y. Ting

Inflammatory bowel diseases involve the dynamic interaction of host genetics, the microbiome and inflammatory responses. Here we found lower expression of NLRP12 (which encodes a negative regulator of innate immunity) in human ulcerative colitis, by comparing monozygotic twins and other patient cohorts. In parallel, Nlrp12 deficiency in mice caused increased basal colonic inflammation, which led to a less-diverse microbiome and loss of protective gut commensal strains (of the family Lachnospiraceae) and a greater abundance of colitogenic strains (of the family Erysipelotrichaceae). Dysbiosis and susceptibility to colitis associated with Nlrp12 deficency were reversed equally by treatment with antibodies targeting inflammatory cytokines and by the administration of beneficial commensal Lachnospiraceae isolates. Fecal transplants from mice reared in specific-pathogen-free conditions into germ-free Nlrp12-deficient mice showed that NLRP12 and the microbiome each contributed to immunological signaling that culminated in colon inflammation. These findings reveal a feed-forward loop in which NLRP12 promotes specific commensals that can reverse gut inflammation, while cytokine blockade during NLRP12 deficiency can reverse dysbiosis.


Current Opinion in Gastroenterology | 2013

Faecal microbiota transplantation for the treatment of recurrent Clostridium difficile infection: current promise and future needs.

Mark J. Koenigsknecht; Vincent B. Young

Purpose of review The use of faecal microbiota transplantation (FMT) as treatment for recurrent Clostridium difficile infection (CDI) has increased rapidly over the past few years. In this review, we highlight clinical studies of FMT for treatment of recurrent CDI and discuss the safety, standardization and future of this treatment option. The major risk factor for CDI is prior antibiotic use, which results in an altered state of the gut microbiota characterized by decreased microbial diversity. This altered gut microbiota increases the patients susceptibility to CDI. In patients with recurrent CDI, the microbiota remains in a state with decreased diversity, and FMT from a healthy individual restores the gut microbiota and subsequently colonization resistance against the pathogen. Recent findings Recent studies have shown the success rate for FMT as treatment for recurrent CDI being greater than 90%. Standardized, frozen preparations of faeces can be used, which increases the availability of faeces for FMT and decreases the cost of screening individual donors. In addition, there have been recent advances in identifying a defined microbial community isolated from faeces that can restore colonization resistance against C. difficile. Summary The use of FMT is a successful treatment for recurrent CDI when primary treatment options have failed. However, more work needs to define potential long-term consequences of this treatment and understand how specific members of the gut microbiota can restore colonization resistance against C. difficile.


Nature microbiology | 2017

The anti-inflammatory drug mesalamine targets bacterial polyphosphate accumulation

Jan Ulrik Dahl; Michael J. Gray; Daphne Bazopoulou; Francois Beaufay; Justine Lempart; Mark J. Koenigsknecht; Ying Wang; Jason Baker; William L. Hasler; Vincent B. Young; Duxin Sun; Ursula Jakob

Mesalamine serves as the gold standard in treating ulcerative colitis. However, its precise mechanism(s) of action remains unclear. Here, we show that mesalamine treatment rapidly decreases polyphosphate levels in diverse bacteria, including members of the human gut microbiome. This decrease sensitizes bacteria towards oxidative stress, reduces colonization and attenuates persister cell and biofilm formation, suggesting that mesalamine aids in diminishing the capacity of bacteria to persist within chronically inflamed environments.


Molecular Pharmaceutics | 2017

Low Buffer Capacity and Alternating Motility along the Human Gastrointestinal Tract: Implications for in Vivo Dissolution and Absorption of Ionizable Drugs

Bart Hens; Yasuhiro Tsume; Marival Bermejo; Paulo Paixão; Mark J. Koenigsknecht; Jason Baker; William L. Hasler; Robert Lionberger; Jianghong Fan; Joseph Dickens; Kerby Shedden; Bo Wen; Jeffrey Wysocki; Raimar Loebenberg; Allen Lee; Ann Frances; Greg E. Amidon; Alex Yu; Gail Benninghoff; Niloufar Salehi; Arjang Talattof; Duxin Sun; Gordon L. Amidon

In this study, we determined the pH and buffer capacity of human gastrointestinal (GI) fluids (aspirated from the stomach, duodenum, proximal jejunum, and mid/distal jejunum) as a function of time, from 37 healthy subjects after oral administration of an 800 mg immediate-release tablet of ibuprofen (reference listed drug; RLD) under typical prescribed bioequivalence (BE) study protocol conditions in both fasted and fed states (simulated by ingestion of a liquid meal). Simultaneously, motility was continuously monitored using water-perfused manometry. The time to appearance of phase III contractions (i.e., housekeeper wave) was monitored following administration of the ibuprofen tablet. Our results clearly demonstrated the dynamic change in pH as a function of time and, most significantly, the extremely low buffer capacity along the GI tract. The buffer capacity on average was 2.26 μmol/mL/ΔpH in fasted state (range: 0.26 and 6.32 μmol/mL/ΔpH) and 2.66 μmol/mL/ΔpH in fed state (range: 0.78 and 5.98 μmol/mL/ΔpH) throughout the entire upper GI tract (stomach, duodenum, and proximal and mid/distal jejunum). The implication of this very low buffer capacity of the human GI tract is profound for the oral delivery of both acidic and basic active pharmaceutical ingredients (APIs). An in vivo predictive dissolution method would require not only a bicarbonate buffer but also, more significantly, a low buffer capacity of dissolution media to reflect in vivo dissolution conditions.


Molecular Pharmaceutics | 2017

In Vivo Dissolution and Systemic Absorption of Immediate Release Ibuprofen in Human Gastrointestinal Tract under Fed and Fasted Conditions

Mark J. Koenigsknecht; Jason Baker; Bo Wen; Ann Frances; Huixia Zhang; Alex Yu; Ting Zhao; Yasuhiro Tsume; Manjunath P. Pai; Barry E. Bleske; Xinyuan Zhang; Robert Lionberger; Allen Lee; Gordon L. Amidon; William L. Hasler; Duxin Sun

In vivo drug dissolution in the gastrointestinal (GI) tract is largely unmeasured. The purpose of this clinical study was to evaluate the in vivo drug dissolution and systemic absorption of the BCS class IIa drug ibuprofen under fed and fasted conditions by direct sampling of stomach and small intestinal luminal content. Expanding current knowledge of drug dissolution in vivo will help to establish physiologically relevant in vitro models predictive of drug dissolution. A multilumen GI catheter was orally inserted into the GI tract of healthy human subjects. Subjects received a single oral dose of ibuprofen (800 mg tablet) with 250 mL of water under fasting and fed conditions. The GI catheter facilitated collection of GI fluid from the stomach, duodenum, and jejunum. Ibuprofen concentration in GI fluid supernatant and plasma was determined by LC-MS/MS. A total of 23 subjects completed the study, with 11 subjects returning for an additional study visit (a total of 34 completed study visits). The subjects were primarily white (61%) and male (65%) with an average age of 30 years. The subjects had a median [min, max] weight of 79 [52, 123] kg and body mass index of 25.7 [19.4, 37.7] kg/m2. Ibuprofen plasma levels were higher under fasted conditions and remained detectable for 28 h under both conditions. The AUC0-24 and Cmax were lower in fed subjects vs fasted subjects, and Tmax was delayed in fed subjects vs fasted subjects. Ibuprofen was detected immediately after ingestion in the stomach under fasting and fed conditions until 7 h after dosing. Higher levels of ibuprofen were detected in the small intestine soon after dosing in fasted subjects compared to fed. In contrast to plasma drug concentration, overall gastric concentrations remained higher under fed conditions due to increased gastric pH vs fasting condition. The gastric pH increased to near neutrality after feedingbefore decreasing to acidic levels after 7 h. Induction of the fed state reduced systemic levels but increased gastric levels of ibuprofen, which suggest that slow gastric emptying and transit dominate the effect for plasma drug concentration. The finding of high levels of ibuprofen in stomach and small intestine 7 h post dosing was unexpected. Future work is needed to better understand the role of various GI parameters, such as motility and gastric emptying, on systemic ibuprofen levels in order to improve in vitro predictive models.


Molecular Pharmaceutics | 2017

Measurement of in vivo Gastrointestinal Release and Dissolution of Three Locally Acting Mesalamine Formulations in Regions of the Human Gastrointestinal Tract

Alex Yu; Jason Baker; Ann F. Fioritto; Ying Wang; Ruijuan Luo; Siwei Li; Bo Wen; Michael J. Bly; Yasuhiro Tsume; Mark J. Koenigsknecht; Xinyuan Zhang; Robert Lionberger; Gordon L. Amidon; William L. Hasler; Duxin Sun

As an orally administered, locally acting gastrointestinal drug, mesalamine products are designed to achieve high local drug concentration in the gastrointestinal (GI) tract for the treatment of ulcerative colitis. The aim of this study was to directly measure and compare drug dissolution of three mesalamine formulations in human GI tract and to correlate their GI concentration with drug concentration in plasma. Healthy human subjects were orally administered Pentasa, Apriso, or Lialda. GI fluids were aspirated from stomach, duodenum, proximal jejunum, mid jejunum, and distal jejunum regions. Mesalamine (5-ASA) and its primary metabolite acetyl-5-mesalamine (Ac-5-ASA) were measured using LC-MS/MS. GI tract pH was measured from each GI fluid sample, which averaged 1.82, 4.97, 5.67, 6.17, and 6.62 in the stomach, duodenum, proximal jejunum, middle jejunum, and distal jejunum, respectively. For Pentasa, high levels of 5-ASA in solution were observed in the stomach, duodenum, proximal jejunum, mid jejunum, and distal jejunum from 1 to 7 h. Apriso had minimal 5-ASA levels in stomach, low to medium levels of 5-ASA in duodenum and proximal jejunum from 4 to 7 h, and high levels of 5-ASA in distal jejunum from 3 to 7 h. In contrast, Lialda had minimal 5-ASA levels from stomach and early small intestine. A composite appearance rate (CAR) was calculated from the deconvolution of individual plasma concentration to reflect drug release, dissolution, transit, and absorption in the GI tract. Individuals dosed with Pentasa had high levels of CAR from 1 to 10 h; individuals dosed with Apriso had low levels of CAR from 1 to 4 h and high levels of CAR from 5 to 10 h; Lialda showed minimal levels of CAR from 0 to 5 h, then increased to medium levels from 5 to 12 h, and then decreased to further lower levels after 12 h. In the colon region, Pentasa and Apriso showed similar levels of accumulated 5-ASA excreted in the feces, while Lialda showed slightly higher 5-ASA accumulation in feces. However, all three formulations showed similar levels of metabolite Ac-5-ASA in the feces. These results provide direct measurement of drug dissolution in the GI tract, which can serve as a basis for investigation of bioequivalence for locally acting drug products.

Collaboration


Dive into the Mark J. Koenigsknecht's collaboration.

Top Co-Authors

Avatar

Duxin Sun

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Jason Baker

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Wen

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Yu

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Allen Lee

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge