Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark J. Kohr is active.

Publication


Featured researches published by Mark J. Kohr.


Circulation Research | 2011

Simultaneous measurement of protein oxidation and S-nitrosylation during preconditioning and ischemia/reperfusion injury with resin-assisted capture.

Mark J. Kohr; Junhui Sun; Angel Aponte; Guanghui Wang; Marjan Gucek; Elizabeth Murphy; Charles Steenbergen

Rationale: Redox modifications play an important role in many cellular processes, including cell death. Ischemic preconditioning (IPC) has been shown to involve redox signaling. Protein S-nitrosylation (SNO) is increased following myocardial IPC, and SNO is thought to provide cardioprotection, in part, by reducing cysteine oxidation during ischemia/reperfusion (IR) injury. Objective: To test the hypothesis that SNO provides cardioprotection, in part, by shielding against cysteine oxidation following IR injury. Methods and Results: We developed a new method to measure protein oxidation using resin-assisted capture (Ox-RAC), which is similar to the SNO-RAC method used in the quantification of SNO. Langendorff-perfused hearts were subjected to various perfusion protocols (control, IPC, IR, IPC-IR, IPC/reperfusion) and homogenized. Each sample was divided into 2 equal aliquots, and the SNO-RAC/Ox-RAC procedure was performed to simultaneously analyze SNO and oxidation. We identified 31 different SNO proteins with IPC, 27 of which showed increased SNO compared to baseline. Of the proteins that showed significantly increased SNO with IPC, 76% showed decreased oxidation or no oxidation following ischemia and early reperfusion (IPC-IR) at the same site when compared to IR alone; for non-SNO proteins, oxidation was reduced by only 50%. We further demonstrated that IPC-induced protein SNO is quickly reversible. Conclusions: These results support the hypothesis that IPC-induced protein SNO provides cardioprotection by shielding cysteine residues from reactive oxygen species–induced oxidation during IR injury. Therefore, the level of protein SNO plays a critical role in IR injury, where ROS production is increased.


Journal of Biological Chemistry | 2011

Cysteine 203 of Cyclophilin D Is Critical for Cyclophilin D Activation of the Mitochondrial Permeability Transition Pore

Tiffany Nguyen; Mark V. Stevens; Mark J. Kohr; Charles Steenbergen; Michael N. Sack; Elizabeth Murphy

Background: Cyclophilin D, a known mitochondrial permeability transition pore (mPTP) regulator, is associated with cellular protection. Results: Mutation of cysteine 203 of cyclophilin D inhibits mPTP opening and improves cell viability. Conclusion: Cysteine 203 of cyclophilin D is a critical residue for mPTP activation. Significance: This work provides novel mechanistic insights into mPTP regulation. The mitochondrial permeability transition pore (mPTP) opening plays a critical role in mediating cell death during ischemia/reperfusion (I/R) injury. Our previous studies have shown that cysteine 203 of cyclophilin D (CypD), a critical mPTP mediator, undergoes protein S-nitrosylation (SNO). To investigate the role of cysteine 203 in mPTP activation, we mutated cysteine 203 of CypD to a serine residue (C203S) and determined its effect on mPTP opening. Treatment of WT mouse embryonic fibroblasts (MEFs) with H2O2 resulted in an 50% loss of the mitochondrial calcein fluorescence, suggesting substantial activation of the mPTP. Consistent with the reported role of CypD in mPTP activation, CypD null (CypD−/−) MEFs exhibited significantly less mPTP opening. Addition of a nitric oxide donor, GSNO, to WT but not CypD−/− MEFs prior to H2O2 attenuated mPTP opening. To test whether Cys-203 is required for this protection, we infected CypD−/− MEFs with a C203S-CypD vector. Surprisingly, C203S-CypD reconstituted MEFs were resistant to mPTP opening in the presence or absence of GSNO, suggesting a crucial role for Cys-203 in mPTP activation. To determine whether mutation of C203S-CypD would alter mPTP in vivo, we injected a recombinant adenovirus encoding C203S-CypD or WT CypD into CypD−/− mice via tail vein. Mitochondria isolated from livers of CypD−/− mice or mice expressing C203S-CypD were resistant to Ca2+-induced swelling as compared with WT CypD-reconstituted mice. Our results indicate that the Cys-203 residue of CypD is necessary for redox stress-induced activation of mPTP.


Journal of Molecular and Cellular Cardiology | 2008

Nitric oxide signaling and the regulation of myocardial function.

Mark T. Ziolo; Mark J. Kohr; Honglan Wang

Nitric oxide, which is produced endogenously within cardiac myocytes by three distinct isoforms of nitric oxide synthase, is a key regulator of myocardial function. This review will focus on the regulation of myocardial function by each nitric oxide synthase isoform during health and disease, with a specific emphasis on the proposed end-targets and signaling pathways.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Characterization of potential S-nitrosylation sites in the myocardium

Mark J. Kohr; Angel Aponte; Junhui Sun; Guanghui Wang; Elizabeth Murphy; Marjan Gucek; Charles Steenbergen

S-nitrosylation (SNO) is a reversible protein modification that has the ability to alter the activity of target proteins. However, only a small number of SNO proteins have been found in the myocardium, and even fewer specific sites of SNO have been identified. Therefore, this study aims to characterize potential SNO sites in the myocardium. We utilized a modified version of the SNO-resin-assisted capture technique in tandem with mass spectrometry. In brief, a modified biotin switch was performed using perfused mouse heart homogenates incubated with or without the S-nitrosylating agent S-nitrosoglutathione. Our modified SNO-resin-assisted capture protocol identified 116 unique SNO-modified proteins under basal conditions, and these represent the constitutive SNO proteome. These constitutive SNO proteins are likely to be physiologically relevant targets, since nitric oxide has been shown to play an important role in the regulation of normal cardiovascular physiology. Following S-nitrosoglutathione treatment, we identified 951 unique SNO proteins, many of which contained multiple SNO sites. These proteins show the potential for SNO. This study provides novel information regarding the constitutive SNO proteome of the myocardium, as well as potential myocardial SNO sites, and yields additional information on the SNO sites for many key proteins involved in myocardial contraction, metabolism, and cellular signaling.


The Journal of Physiology | 2010

Regulation of myocyte contraction via neuronal nitric oxide synthase: role of ryanodine receptor S-nitrosylation

Honglan Wang; Serge Viatchenko-Karpinski; Junhui Sun; Inna Györke; Nancy A. Benkusky; Mark J. Kohr; Héctor H. Valdivia; Elizabeth Murphy; Sandor Gyorke; Mark T. Ziolo

The sarcoplasmic reticulum (SR) Ca2+ release channel (ryanodine receptor, RyR2) has been proposed to be an end target of neuronal nitric oxide synthase (NOS1) signalling. The purpose of this study is to investigate the mechanism of NOS1 modulation of RyR2 activity and the corresponding effect on myocyte function. Myocytes were isolated from NOS1 knockout (NOS1−/−) and wild‐type mice. NOS1−/− myocytes displayed a decreased fractional SR Ca2+ release, NOS1 knockout also led to reduced RyR2 S‐nitrosylation levels. RyR2 channels from NOS1−/− hearts had decreased RyR2 open probability. Additionally, knockout of NOS1 led to a decrease in [3H]ryanodine binding, Ca2+ spark frequency (CaSpF) and a rightward shift in the SR Ca2+ leak/load relationship. Similar effects were observed with acute inhibition of NOS1. These data are indicative of decreased RyR2 activity in myocytes with NOS1 knockout or acute inhibition. Interestingly, the NO donor and nitrosylating agent SNAP reversed the depressed RyR2 open probability, the reduced CaSpF, and caused a leftward shift in the leak/load relationship in NOS1−/− myocytes. SNAP also normalized Ca2+ transient and cell shortening amplitudes and SR fractional release in myocytes with NOS1 knockout or acute inhibition. Furthermore, SNAP was able to normalize the RyR2 S‐nitrosylation levels. These data suggest that NOS1 signalling increases RyR2 activity via S‐nitrosylation, which contributes to the NOS1‐induced positive inotropic effect. Thus, RyR2 is an important end target of NOS1.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Endothelial nitric oxide synthase decreases β-adrenergic responsiveness via inhibition of the L-type Ca2+ current

Honglan Wang; Mark J. Kohr; Debra G. Wheeler; Mark T. Ziolo

Signaling via endothelial nitric oxide synthase (NOS3) limits the hearts response to beta-adrenergic (beta-AR) stimulation, which may be protective against arrhythmias. However, mechanistic data are limited. Therefore, we performed simultaneous measurements of action potential (AP, using patch clamp), Ca2+ transients (fluo 4), and myocyte shortening (edge detection). L-type Ca2+ current (ICa) was directly measured by the whole cell ruptured patch-clamp technique. Myocytes were isolated from wild-type (WT) and NOS3 knockout (NOS3-/-) mice. NOS3-/- myocytes exhibited a larger incidence of beta-AR (isoproterenol, 1 microM)-induced early afterdepolarizations (EADs) and spontaneous activity (defined as aftercontractions). We also examined ICa, a major trigger for EADs. NOS3-/- myocytes had a significantly larger beta-AR-stimulated increase in ICa compared with WT myocytes. In addition, NOS3-/- myocytes had a larger response to beta-AR stimulation compared with WT myocytes in Ca2+ transient amplitude, shortening amplitude, and AP duration (APD). We observed similar effects with specific NOS3 inhibition [L-N5-(1-iminoethyl)-ornithine (l-NIO), 10 microM] in WT myocytes as with NOS3 knockout. Specifically, l-NIO further increased isoproterenol-stimulated EADs and aftercontractions. l-NIO also further increased the isoproterenol-stimulated ICa, Ca2+ transient amplitude, shortening amplitude, and APD (all P < 0.05 vs isoproterenol alone). l-NIO had no effect in NOS3-/- myocytes. These results indicate that NOS3 signaling inhibits the beta-AR response by reducing ICa and protects against arrhythmias. This mechanism may play an important role in heart failure, where arrhythmias are increased and NOS3 expression is decreased.


American Journal of Physiology-cell Physiology | 2008

Neuronal nitric oxide synthase signaling within cardiac myocytes targets phospholamban

Honglan Wang; Mark J. Kohr; Christopher J. Traynham; Debra G. Wheeler; Paul M. L. Janssen; Mark T. Ziolo

Studies have shown that neuronal nitric oxide synthase (nNOS, NOS1) knockout mice (NOS1-/-) have increased or decreased contractility, but consistently have found a slowed rate of intracellular Ca2+ ([Ca2+]i) decline and relengthening. Contraction and [Ca2+]i decline are determined by many factors, one of which is phospholamban (PLB). The purpose of this study is to determine the involvement of PLB in the NOS1-mediated effects. Force-frequency experiments were performed in trabeculae isolated from NOS1-/- and wild-type (WT) mice. We also simultaneously measured Ca2+ transients (Fluo-4) and cell shortening (edge detection) in myocytes isolated from WT, NOS1-/-, and PLB-/- mice. NOS1-/- trabeculae had a blunted force-frequency response and prolonged relaxation. We observed similar effects in myocytes with NOS1 knockout or specific NOS1 inhibition with S-methyl-l-thiocitrulline (SMLT) in WT myocytes (i.e., decreased Ca2+ transient and cell shortening amplitudes and prolonged decline of [Ca2+]i). Alternatively, NOS1 inhibition with SMLT in PLB-/- myocytes had no effect. Acute inhibition of NOS1 with SMLT in WT myocytes also decreased basal PLB serine16 phosphorylation. Furthermore, there was a decreased SR Ca2+ load with NOS1 knockout or inhibition, which is consistent with the negative contractile effects. Perfusion with FeTPPS (peroxynitrite decomposition catalyst) mimicked the effects of NOS1 knockout or inhibition. beta-Adrenergic stimulation restored the slowed [Ca2+]i decline in NOS1-/- myocytes, but a blunted contraction remained, suggesting additional protein target(s). In summary, NOS1 inhibition or knockout leads to decreased contraction and slowed [Ca2+]i decline, and this effect is absent in PLB-/- myocytes. Thus NOS1 signaling modulates PLB serine16 phosphorylation, in part, via peroxynitrite.


Antioxidants & Redox Signaling | 2012

Disruption of Caveolae Blocks Ischemic Preconditioning-Mediated S-Nitrosylation of Mitochondrial Proteins

Junhui Sun; Mark J. Kohr; Tiffany Nguyen; Angel Aponte; Patricia S. Connelly; Shervin G. Esfahani; Marjan Gucek; Mathew P. Daniels; Charles Steenbergen; Elizabeth Murphy

AIMS Nitric oxide (NO) and protein S-nitrosylation (SNO) play important roles in ischemic preconditioning (IPC)-induced cardioprotection. Mitochondria are key regulators of preconditioning, and most proteins showing an increase in SNO with IPC are mitochondrial. The aim of this study was to address how IPC transduces NO/SNO signaling to mitochondria in the heart. RESULTS In this study using Langendorff perfused mouse hearts, we found that IPC-induced cardioprotection was blocked by treatment with either N-nitro-L-arginine methyl ester (L-NAME, a constitutive NO synthase inhibitor), ascorbic acid (a reducing agent to decompose SNO), or methyl-?-cyclodextrin (M?CD, a cholesterol sequestering agent to disrupt caveolae). IPC not only activated AKT/eNOS signaling but also led to translocation of eNOS to mitochondria. M?CD treatment disrupted caveolar structure, leading to dissociation of eNOS from caveolin-3 and blockade of IPC-induced activation of the AKT/eNOS signaling pathway. A significant increase in mitochondrial SNO was found in IPC hearts compared to perfusion control, and the disruption of caveolae by M?CD treatment not only abolished IPC-induced cardioprotection, but also blocked the IPC-induced increase in SNO. INNOVATION These results provide mechanistic insight into how caveolae/eNOS/NO/SNO signaling mediates cardioprotection induced by IPC. CONCLUSION Altogether these results suggest that caveolae transduce eNOS/NO/SNO cardioprotective signaling in the heart.


Journal of Molecular and Cellular Cardiology | 2009

Phosphodiesterase 5 restricts NOS3/Soluble guanylate cyclase signaling to L-type Ca2+ current in cardiac myocytes

Honglan Wang; Mark J. Kohr; Christopher J. Traynham; Mark T. Ziolo

Endothelial nitric oxide synthase (NOS3) regulates the functional response to beta-adrenergic (beta-AR) stimulation via modulation of the L-type Ca(2+) current (I(Ca)). However, the NOS3 signaling pathway modulating I(Ca) is unknown. This study investigated the contribution of soluble guanylate cyclase (sGC) and phosphodiesterase type 5 (PDE5), a cGMP-specific PDE, in the NOS3-mediated regulation of I(Ca). Myocytes were isolated from NOS3 knockout (NOS3(-/-)) and wildtype (WT) mice. We measured I(Ca) (whole-cell voltage-clamp), and simultaneously measured Ca(2+) transients (Fluo-4 AM) and cell shortening (edge detection). Zaprinast (selective inhibitor of PDE5), decreased beta-AR stimulated (isoproterenol, ISO)-I(Ca), and Ca(2+) transient and cell shortening amplitudes in WT myocytes. However, YC-1 (NO-independent activator of sGC) only reduced ISO-stimulated I(Ca), but not cardiac contraction. We further investigated the NOS3/sGC/PDE5 pathway in NOS3(-/-) myocytes. PDE5 is mislocalized in these myocytes and we observed dissimilar effects of PDE5 inhibition and sGC activation compared to WT. That is, zaprinast had no effect on ISO-stimulated I(Ca), or Ca(2+) transient and cell shortening amplitudes. Conversely, YC-1 significantly decreased both ISO-stimulated I(Ca), and cardiac contraction. Further confirming that PDE5 localizes NOS3/cGMP signaling to I(Ca); YC-1, in the presence of zaprinast, now significantly decreased ISO-stimulated Ca(2+) transient and cell shortening amplitudes in WT myocytes. The effects of YC-1 on I(Ca) and cardiac contraction were blocked by KT5823 (a selective inhibitor of the cGMP-dependent protein kinase, PKG). Our data suggests a novel physiological role for PDE5 in restricting the effects of NOS3/sGC/PKG signaling pathway to modulating beta-AR stimulated I(Ca), while limiting effects on cardiac contraction.


Free Radical Biology and Medicine | 2013

Essential role of nitric oxide in acute ischemic preconditioning: S-Nitros(yl)ation versus sGC/cGMP/PKG signaling?

Junhui Sun; Angel Aponte; Mark J. Kohr; Guang Tong; Charles Steenbergen; Elizabeth Murphy

Nitric oxide (NO) plays an important role in acute ischemic preconditioning (IPC). In addition to activating soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) signaling pathways, NO-mediated protein S-nitros(yl)ation (SNO) has been recently shown to play an essential role in cardioprotection against ischemia-reperfusion (I/R) injury. In our previous studies, we have shown that IPC-induced cardioprotection could be blocked by treatment with either N-nitro-L-arginine methyl ester (L-NAME, a constitutive NO synthase inhibitor) or ascorbate (a reducing agent to decompose SNO). To clarify NO-mediated sGC/cGMP/PKG-dependent or -independent (i.e., SNO) signaling involved in IPC-induced cardioprotection, mouse hearts were Langendorff-perfused in the dark to prevent SNO decomposition by light exposure. Treatment with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, a highly selective inhibitor of sGC) or KT5823 (a potent and selective inhibitor of PKG) did not abolish IPC-induced acute protection, suggesting that the sGC/cGMP/PKG signaling pathway does not play an important role in NO-mediated cardioprotective signaling during acute IPC. In addition, treatment with ODQ in IPC hearts provided an additional protective effect on functional recovery, in parallel with a higher SNO level in these ODQ+IPC hearts. In conclusion, these results suggest that the protective effect of NO is not related primarily to activation of the sGC/cGMP/PKG signaling pathway, but rather through SNO signaling in IPC-induced acute cardioprotection.

Collaboration


Dive into the Mark J. Kohr's collaboration.

Top Co-Authors

Avatar

Elizabeth Murphy

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junhui Sun

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angel Aponte

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Marjan Gucek

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tiffany Nguyen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guanghui Wang

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge