Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark J. Margres is active.

Publication


Featured researches published by Mark J. Margres.


BMC Genomics | 2012

The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus)

Darin R. Rokyta; Alan R. Lemmon; Mark J. Margres; Karalyn Aronow

BackgroundSnake venoms have significant impacts on human populations through the morbidity and mortality associated with snakebites and as sources of drugs, drug leads, and physiological research tools. Genes expressed by venom-gland tissue, including those encoding toxic proteins, have therefore been sequenced but only with relatively sparse coverage resulting from the low-throughput sequencing approaches available. High-throughput approaches based on 454 pyrosequencing have recently been applied to the study of snake venoms to give the most complete characterizations to date of the genes expressed in active venom glands, but such approaches are costly and still provide a far-from-complete characterization of the genes expressed during venom production.ResultsWe describe the de novo assembly and analysis of the venom-gland transcriptome of an eastern diamondback rattlesnake (Crotalus adamanteus) based on 95,643,958 pairs of quality-filtered, 100-base-pair Illumina reads. We identified 123 unique, full-length toxin-coding sequences, which cluster into 78 groups with less than 1% nucleotide divergence, and 2,879 unique, full-length nontoxin coding sequences. The toxin sequences accounted for 35.4% of the total reads, and the nontoxin sequences for an additional 27.5%. The most highly expressed toxin was a small myotoxin related to crotamine, which accounted for 5.9% of the total reads. Snake-venom metalloproteinases accounted for the highest percentage of reads mapping to a toxin class (24.4%), followed by C-type lectins (22.2%) and serine proteinases (20.0%). The most diverse toxin classes were the C-type lectins (21 clusters), the snake-venom metalloproteinases (16 clusters), and the serine proteinases (14 clusters). The high-abundance nontoxin transcripts were predominantly those involved in protein folding and translation, consistent with the protein-secretory function of the tissue.ConclusionsWe have provided the most complete characterization of the genes expressed in an active snake venom gland to date, producing insights into snakebite pathology and guidance for snakebite treatment for the largest rattlesnake species and arguably the most dangerous snake native to the United States of America, C. adamanteus. We have more than doubled the number of sequenced toxins for this species and created extensive genomic resources for snakes based entirely on de novo assembly of Illumina sequence data.


BMC Genomics | 2013

The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms

Mark J. Margres; Karalyn Aronow; Jacob Loyacano; Darin R. Rokyta

BackgroundSnake venom is shaped by the ecology and evolution of venomous species, and signals of positive selection in toxins have been consistently documented, reflecting the role of venoms as an ecologically critical phenotype. New World coral snakes (Elapidae) are represented by three genera and over 120 species and subspecies that are capable of causing significant human morbidity and mortality, yet coral-snake venom composition is poorly understood in comparison to that of Old World elapids. High-throughput sequencing is capable of identifying thousands of loci, while providing characterizations of expression patterns and the molecular evolutionary forces acting within the venom gland.ResultsWe describe the de novo assembly and analysis of the venom-gland transcriptome of the eastern coral snake (Micrurus fulvius). We identified 1,950 nontoxin transcripts and 116 toxin transcripts. These transcripts accounted for 57.1% of the total reads, with toxins accounting for 45.8% of the total reads. Phospholipases A2 and three-finger toxins dominated expression, accounting for 86.0% of the toxin reads. A total of 15 toxin families were identified, revealing venom complexity previously unknown from New World coral snakes. Toxins exhibited high levels of heterozygosity relative to nontoxins, and overdominance may favor gene duplication leading to the fixation of advantageous alleles. Phospholipase A2 expression was uniformly distributed throughout the class while three-finger toxin expression was dominated by a handful of transcripts, and phylogenetic analyses indicate that toxin divergence may have occurred following speciation. Positive selection was detected in three of the four most diverse toxin classes, suggesting that venom diversification is driven by recurrent directional selection.ConclusionsWe describe the most complete characterization of an elapid venom gland to date. Toxin gene duplication may be driven by heterozygote advantage, as the frequency of polymorphic toxin loci was significantly higher than that of nontoxins. Diversification among toxins appeared to follow speciation reflecting species-specific adaptation, and this divergence may be directly related to dietary shifts and is suggestive of a coevolutionary arms race.


Journal of Proteomics | 2014

Linking the transcriptome and proteome to characterize the venom of the eastern diamondback rattlesnake (Crotalus adamanteus).

Mark J. Margres; James J. McGivern; Kenneth P. Wray; Margaret Seavy; Kate Calvin; Darin R. Rokyta

UNLABELLED Understanding the molecular basis of the phenotype is key to understanding adaptation, and the relationship between genes and specific traits is represented by the genotype-phenotype map. The specialization of the venom-gland towards toxin production enables the use of transcriptomics to identify a large number of loci that contribute to a complex phenotype (i.e., venom), while proteomic techniques allow verification of the secretion of the proteins produced by these loci, creating a genotype-phenotype map. We used the extensive database of mRNA transcripts generated by the venom-gland transcriptome of Crotalus adamanteus along with proteomic techniques to complete the genotype-phenotype map for the C. adamanteus venom system. Nanospray LC/MS(E) analysis of a whole venom sample identified evidence for 52 of the 78 unique putative toxin transcript clusters, including 44 of the 50 most highly expressed transcripts. Tandem mass spectrometry and SDS-PAGE of reversed-phase high-performance liquid chromatography fractions identified 40 toxins which clustered into 20 groups and represented 10 toxin families, creating a genotype-phenotype map. By using the transcriptome to understand the proteome we were able to achieve locus-specific resolution and provide a detailed characterization of the C. adamanteus venom system. BIOLOGICAL SIGNIFICANCE Identifying the mechanisms by which genetic variation presents itself to the sieve of selection at the phenotypic level is key to understanding the molecular basis of adaptation, and the first step in understanding this relationship is to identify the genetic basis of the phenotype through the construction of a genotype-phenotype map. We used the high-throughput venom-gland transcriptomic characterization of the eastern diamondback rattlesnake (C. adamanteus) and proteomic techniques to complete and confirm the genotype-phenotype map, providing a detailed characterization of the C. adamanteus venom system.


BMC Genomics | 2013

The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics

Darin R. Rokyta; Kenneth P. Wray; Mark J. Margres

BackgroundSnake venoms generally show sequence and quantitative variation within and between species, but some rattlesnakes have undergone exceptionally rapid, dramatic shifts in the composition, lethality, and pharmacological effects of their venoms. Such shifts have occurred within species, most notably in Mojave (Crotalus scutulatus), South American (C. durissus), and timber (C. horridus) rattlesnakes, resulting in some populations with extremely potent, neurotoxic venoms without the hemorrhagic effects typical of rattlesnake bites.ResultsTo better understand the evolutionary changes that resulted in the potent venom of a population of C. horridus from northern Florida, we sequenced the venom-gland transcriptome of an animal from this population for comparison with the previously described transcriptome of the eastern diamondback rattlesnake (C. adamanteus), a congener with a more typical rattlesnake venom. Relative to the toxin transcription of C. adamanteus, which consisted primarily of snake-venom metalloproteinases, C-type lectins, snake-venom serine proteinases, and myotoxin-A, the toxin transcription of C. horridus was far simpler in composition and consisted almost entirely of snake-venom serine proteinases, phospholipases A2, and bradykinin-potentiating and C-type natriuretic peptides. Crotalus horridus lacked significant expression of the hemorrhagic snake-venom metalloproteinases and C-type lectins. Evolution of shared toxin families involved differential expansion and loss of toxin clades within each species and pronounced differences in the highly expressed toxin paralogs. Toxin genes showed significantly higher rates of nonsynonymous substitution than nontoxin genes. The expression patterns of nontoxin genes were conserved between species, despite the vast differences in toxin expression.ConclusionsOur results represent the first complete, sequence-based comparison between the venoms of closely related snake species and reveal in unprecedented detail the rapid evolution of snake venoms. We found that the difference in venom properties resulted from major changes in expression levels of toxin gene families, differential gene-family expansion and loss, changes in which paralogs within gene families were expressed at high levels, and higher nonsynonymous substitution rates in the toxin genes relative to nontoxins. These massive alterations in the genetics of the venom phenotype emphasize the evolutionary lability and flexibility of this ecologically critical trait.


Genetics | 2015

Contrasting Modes and Tempos of Venom Expression Evolution in Two Snake Species

Mark J. Margres; James J. McGivern; Margaret Seavy; Kenneth P. Wray; Jack Facente; Darin R. Rokyta

Selection is predicted to drive diversification within species and lead to local adaptation, but understanding the mechanistic details underlying this process and thus the genetic basis of adaptive evolution requires the mapping of genotype to phenotype. Venom is complex and involves many genes, but the specialization of the venom gland toward toxin production allows specific transcripts to be correlated with specific toxic proteins, establishing a direct link from genotype to phenotype. To determine the extent of expression variation and identify the processes driving patterns of phenotypic diversity, we constructed genotype-phenotype maps and compared range-wide toxin-protein expression variation for two species of snake with nearly identical ranges: the eastern diamondback rattlesnake (Crotalus adamanteus) and the eastern coral snake (Micrurus fulvius). We detected significant expression variation in C. adamanteus, identified the specific loci associated with population differentiation, and found that loci expressed at all levels contributed to this divergence. Contrary to expectations, we found no expression variation in M. fulvius, suggesting that M. fulvius populations are not locally adapted. Our results not only linked expression variation at specific loci to divergence in a polygenic, complex trait but also have extensive conservation and biomedical implications. C. adamanteus is currently a candidate for federal listing under the Endangered Species Act, and the loss of any major population would result in the irrevocable loss of a unique venom phenotype. The lack of variation in M. fulvius has significant biomedical application because our data will assist in the development of effective antivenom for this species.


G3: Genes, Genomes, Genetics | 2015

Post-transcriptional Mechanisms Contribute Little to Phenotypic Variation in Snake Venoms.

Darin R. Rokyta; Mark J. Margres; Kate Calvin

Protein expression is a major link in the genotype–phenotype relationship, and processes affecting protein abundances, such as rates of transcription and translation, could contribute to phenotypic evolution if they generate heritable variation. Recent work has suggested that mRNA abundances do not accurately predict final protein abundances, which would imply that post-transcriptional regulatory processes contribute significantly to phenotypes. Post-transcriptional processes also appear to buffer changes in transcriptional patterns as species diverge, suggesting that the transcriptional changes have little or no effect on the phenotypes undergoing study. We tested for concordance between mRNA and protein expression levels in snake venoms by means of mRNA-seq and quantitative mass spectrometry for 11 snakes representing 10 species, six genera, and three families. In contrast to most previous work, we found high correlations between venom gland transcriptomes and venom proteomes for 10 of our 11 comparisons. We tested for protein-level buffering of transcriptional changes during species divergence by comparing the difference between transcript abundance and protein abundance for three pairs of species and one intraspecific pair. We found no evidence for buffering during divergence of our three species pairs but did find evidence for protein-level buffering for our single intraspecific comparison, suggesting that buffering, if present, was a transient phenomenon in venom divergence. Our results demonstrated that post-transcriptional mechanisms did not contribute significantly to phenotypic evolution in venoms and suggest a more prominent and direct role for cis-regulatory evolution in phenotypic variation, particularly for snake venoms.


BMC Genomics | 2014

RNA-seq and high-definition mass spectrometry reveal the complex and divergent venoms of two rear-fanged colubrid snakes

James J. McGivern; Kenneth P. Wray; Mark J. Margres; Michelle E Couch; Stephen P. Mackessy; Darin R. Rokyta

BackgroundLargely because of their direct, negative impacts on human health, the venoms of front-fanged snakes of the families Viperidae and Elapidae have been extensively characterized proteomically, transcriptomically, and pharmacologically. However, relatively little is known about the molecular complexity and evolution of the venoms of rear-fanged colubrid snakes, which are, with a few notable exceptions, regarded as harmless to humans. Many of these snakes have venoms with major effects on their preferred prey, and their venoms are probably as critical to their survival as those of front-fanged elapids and viperids.ResultsWe sequenced the venom-gland transcriptomes from a specimen of Hypsiglena (Desert Night Snake; family Colubridae, subfamily Dipsadinae) and of Boiga irregularis (Brown Treesnake; family Colubridae, subfamily Colubrinae) and verified the transcriptomic results proteomically by means of high-definition mass spectrometry. We identified nearly 3,000 nontoxin genes for each species. For B. irregularis, we found 108 putative toxin transcripts in 46 clusters with <1% nucleotide divergence, and for Hypsiglena we identified 79 toxin sequences that were grouped into 33 clusters. Comparisons of the venoms revealed divergent venom types, with Hypsiglena possessing a viper-like venom dominated by metalloproteinases, and B. irregularis having a more elapid-like venom, consisting primarily of three-finger toxins.ConclusionsDespite the difficulty of procuring venom from rear-fanged species, we were able to complete all analyses from a single specimen of each species without pooling venom samples or glands, demonstrating the power of high-definition transcriptomic and proteomic approaches. We found a high level of divergence in the venom types of two colubrids. These two venoms reflected the hemorrhagic/neurotoxic venom dichotomy that broadly characterizes the difference in venom strategies between elapids and viperids.


Molecular Ecology | 2015

Phenotypic integration in the feeding system of the eastern diamondback rattlesnake (Crotalus adamanteus).

Mark J. Margres; Kenneth P. Wray; Margaret Seavy; James J. McGivern; Dragana Sanader; Darin R. Rokyta

Selection can vary geographically across environments and temporally over the lifetime of an individual. Unlike geographic contexts, where different selective regimes can act on different alleles, age‐specific selection is constrained to act on the same genome by altering age‐specific expression. Snake venoms are exceptional traits for studying ontogeny because toxin expression variation directly changes the phenotype; relative amounts of venom components determine, in part, venom efficacy. Phenotypic integration is the dependent relationship between different traits that collectively produce a complex phenotype and, in venomous snakes, may include traits as diverse as venom, head shape and fang length. We examined the feeding system of the eastern diamondback rattlesnake (Crotalus adamanteus) across environments and over the lifetime of individuals and used a genotype–phenotype map approach, protein expression data and morphological data to demonstrate that: (i) ontogenetic effects explained more of the variation in toxin expression variation than geographic effects, (ii) both juveniles and adults varied geographically, (iii) toxin expression variation was a result of directional selection and (iv) different venom phenotypes covaried with morphological traits also associated with feeding in temporal (ontogenetic) and geographic (functional) contexts. These data are the first to demonstrate, to our knowledge, phenotypic integration between multiple morphological characters and a biochemical phenotype across populations and age classes. We identified copy number variation as the mechanism driving the difference in the venom phenotype associated with these morphological differences, and the parallel mitochondrial, venom and morphological divergence between northern and southern clades suggests that each clade may warrant classification as a separate evolutionarily significant unit.


Toxicon | 2015

Early significant ontogenetic changes in snake venoms

Kenneth P. Wray; Mark J. Margres; Margaret Seavy; Darin R. Rokyta

Snake venom plays a critical role in food acquisition, digestion, and defense. Venoms are known to change throughout the life of some snake species, but nothing is known about the venom composition of hatchling/neonate snakes prior to and just after their first shedding cycle, despite this being a critical time in the life of the snake. Using a cohort of Crotalus horridus and two cohorts of Crotalus adamanteus, we showed for the first time that snakes undergo significant changes in venom composition after the postnatal shedding event. The number of changes among cohorts ranged widely and there was wide variation in the direction of protein regulation, which appeared to be on a locus-specific level rather than protein-family level. These significant venom composition changes that take place in the first few weeks of life most likely play critical roles in venom economy and resource conservation and may partially explain the rare, post-birth maternal care found in some venomous species.


Toxicon | 2016

Functional characterizations of venom phenotypes in the eastern diamondback rattlesnake (Crotalus adamanteus) and evidence for expression-driven divergence in toxic activities among populations.

Mark J. Margres; Robert Walls; Montamas Suntravat; Sara Lucena; Elda E. Sánchez; Darin R. Rokyta

Phenotypes frequently vary across and within species. The connection between specific phenotypic effects and function, however, is less understood despite being essential to our understanding of the adaptive process. Snake venoms are ideal for identifying functionally important phenotypic variation because venom variation is common, and venoms can be functionally characterized through simple assays and toxicity measurements. Previous work with the eastern diamondback rattlesnake (Crotalus adamanteus) used multivariate statistical approaches to identify six unique venom phenotypes. We functionally characterized hemolytic, gelatinase, fibrinogenolytic, and coagulant activity for all six phenotypes, as well as one additional venom, to determine if the statistically significant differences in toxin expression levels previously documented corresponded to differences in venom activity. In general, statistical differences in toxin expression predicted the identified functional differences, or lack thereof, in toxic activity, demonstrating that the statistical approach used to characterize C. adamanteus venoms was a fair representation of biologically meaningful differences. Minor differences in activity not accounted for by the statistical model may be the result of amino-acid differences and/or post-translational modifications, but overall we were able to link variation in protein expression levels to variation in function as predicted by multivariate statistical approaches.

Collaboration


Dive into the Mark J. Margres's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margaret Seavy

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Alan R. Lemmon

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karalyn Aronow

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Kate Calvin

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge