Márk Jelasity
University of Szeged
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Márk Jelasity.
ACM Transactions on Computer Systems | 2005
Márk Jelasity; Alberto Montresor; Ozalp Babaoglu
As computer networks increase in size, become more heterogeneous and span greater geographic distances, applications must be designed to cope with the very large scale, poor reliability, and often, with the extreme dynamism of the underlying network. Aggregation is a key functional building block for such applications: it refers to a set of functions that provide components of a distributed system access to global information including network size, average load, average uptime, location and description of hotspots, and so on. Local access to global information is often very useful, if not indispensable for building applications that are robust and adaptive. For example, in an industrial control application, some aggregate value reaching a threshold may trigger the execution of certain actions; a distributed storage system will want to know the total available free space; load-balancing protocols may benefit from knowing the target average load so as to minimize the load they transfer. We propose a gossip-based protocol for computing aggregate values over network components in a fully decentralized fashion. The class of aggregate functions we can compute is very broad and includes many useful special cases such as counting, averages, sums, products, and extremal values. The protocol is suitable for extremely large and highly dynamic systems due to its proactive structure---all nodes receive the aggregate value continuously, thus being able to track any changes in the system. The protocol is also extremely lightweight, making it suitable for many distributed applications including peer-to-peer and grid computing systems. We demonstrate the efficiency and robustness of our gossip-based protocol both theoretically and experimentally under a variety of scenarios including node and communication failures.
ACM Transactions on Computer Systems | 2007
Márk Jelasity; Spyros Voulgaris; Rachid Guerraoui; Anne-Marie Kermarrec; Maarten van Steen
Gossip-based communication protocols are appealing in large-scale distributed applications such as information dissemination, aggregation, and overlay topology management. This paper factors out a fundamental mechanism at the heart of all these protocols: the peer-sampling service. In short, this service provides every node with peers to gossip with. We promote this service to the level of a first-class abstraction of a large-scale distributed system, similar to a name service being a first-class abstraction of a local-area system. We present a generic framework to implement a peer-sampling service in a decentralized manner by constructing and maintaining dynamic unstructured overlays through gossiping membership information itself. Our framework generalizes existing approaches and makes it easy to discover new ones. We use this framework to empirically explore and compare several implementations of the peer-sampling service. Through extensive simulation experiments we show that---although all protocols provide a good quality uniform random stream of peers to each node locally---traditional theoretical assumptions about the randomness of the unstructured overlays as a whole do not hold in any of the instances. We also show that different design decisions result in severe differences from the point of view of two crucial aspects: load balancing and fault tolerance. Our simulations are validated by means of a wide-area implementation.
acm ifip usenix international conference on middleware | 2004
Márk Jelasity; Rachid Guerraoui; Anne-Marie Kermarrec; Maarten van Steen
In recent years, the gossip-based communication model in large-scale distributed systems has become a general paradigm with important applications which include information dissemination, aggregation, overlay topology management and synchronization. At the heart of all of these protocols lies a fundamental distributed abstraction: the peer sampling service. In short, the aim of this service is to provide every node with peers to exchange information with. Analytical studies reveal a high reliability and efficiency of gossip-based protocols, under the (often implicit) assumption that the peers to send gossip messages to are selected uniformly at random from the set of all nodes. In practice -- instead of requiring all nodes to know all the peer nodes so that a random sample could be drawn -- a scalable and efficient way to implement the peer sampling service is by constructing and maintaining dynamic unstructured overlays through gossiping membership information itself.This paper presents a generic framework to implement reliable and efficient peer sampling services. The framework generalizes existing approaches and makes it easy to introduce new ones. We use this framework to explore and compare several implementations of our abstraction. Through extensive experimental analysis, we show that all of them lead to different peer sampling services none of which is uniformly random. This clearly renders traditional theoretical approaches invalid, when the underlying peer sampling service is based on a gossip-based scheme. Our observations also help explain important differences between design choices of peer sampling algorithms, and how these impact the reliability of the corresponding service.
ACM Transactions on Autonomous and Adaptive Systems | 2006
Ozalp Babaoglu; Geoffrey Canright; Andreas Deutsch; Gianni A. Di Caro; Frederick Ducatelle; Luca Maria Gambardella; Niloy Ganguly; Márk Jelasity; Roberto Montemanni; Alberto Montresor; Tore Urnes
Recent developments in information technology have brought about important changes in distributed computing. New environments such as massively large-scale, wide-area computer networks and mobile ad hoc networks have emerged. Common characteristics of these environments include extreme dynamicity, unreliability, and large scale. Traditional approaches to designing distributed applications in these environments based on central control, small scale, or strong reliability assumptions are not suitable for exploiting their enormous potential. Based on the observation that living organisms can effectively organize large numbers of unreliable and dynamically-changing components (cells, molecules, individuals, etc.) into robust and adaptive structures, it has long been a research challenge to characterize the key ideas and mechanisms that make biological systems work and to apply them to distributed systems engineering. In this article we propose a conceptual framework that captures several basic biological processes in the form of a family of design patterns. Examples include plain diffusion, replication, chemotaxis, and stigmergy. We show through examples how to implement important functions for distributed computing based on these patterns. Using a common evaluation methodology, we show that our bio-inspired solutions have performance comparable to traditional, state-of-the-art solutions while they inherit desirable properties of biological systems including adaptivity and robustness.
Computer Networks | 2009
Márk Jelasity; Alberto Montresor; Ozalp Babaoglu
Large-scale overlay networks have become crucial ingredients of fully-decentralized applications and peer-to-peer systems. Depending on the task at hand, overlay networks are organized into different topologies, such as rings, trees, semantic and geographic proximity networks. We argue that the central role overlay networks play in decentralized application development requires a more systematic study and effort towards understanding the possibilities and limits of overlay network construction in its generality. Our contribution in this paper is a gossip protocol called T-Man that can build a wide range of overlay networks from scratch, relying only on minimal assumptions. The protocol is fast, robust, and very simple. It is also highly configurable as the desired topology itself is a parameter in the form of a ranking method that orders nodes according to preference for a base node to select them as neighbors. The paper presents extensive empirical analysis of the protocol along with theoretical analysis of certain aspects of its behavior. We also describe a practical application of T-Man for building Chord distributed hash table overlays efficiently from scratch.
ESOA'05 Proceedings of the Third international conference on Engineering Self-Organising Systems | 2005
Márk Jelasity; Ozalp Babaoglu
Overlay topology plays an important role in P2P systems. Topology serves as a basis for achieving functions such as routing, searching and information dissemination, and it has a major impact on their efficiency, cost and robustness. Furthermore, the solution to problems such as sorting and clustering of nodes can also be interpreted as a topology. In this paper we propose a generic protocol, T-MAN, for constructing and maintaining a large class of topologies. In the proposed framework, a topology is defined with the help of a ranking function. The nodes participating in the protocol can use this ranking function to order any set of other nodes according to preference for choosing them as a neighbor. This simple abstraction makes it possible to control the self-organization process of topologies in a straightforward, intuitive and flexible manner. At the same time, the T-MAN protocol involves only local communication to increase the quality of the current set of neighbors of each node. We show that this bottom-up approach results in fast convergence and high robustness in dynamic environments. The protocol can be applied as a standalone solution as well as a component for recovery or bootstrapping of other protocols.
Nature Genetics | 2011
Balázs Szappanos; Károly Kovács; Béla Szamecz; Frantisek Honti; Michael Costanzo; Anastasia Baryshnikova; Gabriel Gelius-Dietrich; Martin J. Lercher; Márk Jelasity; Chad L. Myers; Brenda Andrews; Charles Boone; Stephen G. Oliver; Csaba Pál; Balázs Papp
Although experimental and theoretical efforts have been applied to globally map genetic interactions, we still do not understand how gene-gene interactions arise from the operation of biomolecular networks. To bridge the gap between empirical and computational studies, we i, quantitatively measured genetic interactions between ∼185,000 metabolic gene pairs in Saccharomyces cerevisiae, ii, superposed the data on a detailed systems biology model of metabolism and iii, introduced a machine-learning method to reconcile empirical interaction data with model predictions. We systematically investigated the relative impacts of functional modularity and metabolic flux coupling on the distribution of negative and positive genetic interactions. We also provide a mechanistic explanation for the link between the degree of genetic interaction, pleiotropy and gene dispensability. Last, we show the feasibility of automated metabolic model refinement by correcting misannotations in NAD biosynthesis and confirming them by in vivo experiments.
parallel problem solving from nature | 2002
M. G. Arenas; Pierre Collet; A. E. Eiben; Márk Jelasity; Juan Julián Merelo Guervós; Ben Paechter; Mike Preuß; Marc Schoenauer
This paper describes the recently released DREAM (Distributed Resource Evolutionary Algorithm Machine) framework for the automatic distribution of evolutionary algorithm (EA) processing through a virtual machine built from large numbers of individual machines linked by standard Internet protocols. The framework allows five different user entry points which depend on the knowledge and requirements of the user. At the highest level, users may specify and run distributed EAs simply by manipulating graphical displays. At the lowest level the framework turns becomes a P2P (Peer to Peer) mobile agent system, that may be used for the automatic distribution of a class of processes including, but not limited to, EAs.
congress on evolutionary computation | 2002
A. E. Eiben; Márk Jelasity
In this paper, we point to some essential shortcomings in contemporary practice in performing and documenting experimental research in evolutionary computing (EC). We identify some crucial problems and the limitations of this practice, and elaborate on research directions that should be pursued to improve the quality and relevance of experimental research.
Lecture Notes in Computer Science | 2003
Spyros Voulgaris; Márk Jelasity; Maarten van Steen
The newscast model is a general approach for communication in large agent-based distributed systems. The two basic services—membership management and information dissemination—are implemented by the same epidemic-style protocol. In this paper we present the newscast model and report on experiments using a Java implementation. The experiments involve communication in a large, wide-area cluster computer. By analysis of the outcome of the experiments we demonstrate that the system indeed shows the scalability and dependability properties predicted by our previous theoretical and simulation results.