Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Jermy is active.

Publication


Featured researches published by Mark Jermy.


Solid State Nuclear Magnetic Resonance | 1995

Examination of the mixed-alkali effect in (Li,Na) disilicate glasses by nuclear magnetic resonance and conductivity measurements.

Fatima Ali; Alan V. Chadwick; G.N. Greaves; Mark Jermy; K.L. Ngai; Mark E. Smith

Results from 29Si, 23Na and 7Li magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy, 7Li NMR relaxation and electrical conductivity in a series of [Li(1-x).Nax]2O.2SiO2 (disilicate) glasses are used to investigate the mixed-alkali effect. From the 29Si NMR spectra there is relatively little change of the network with alkali composition. 23Na and 7Li NMR linewidths and shifts change continuously as a function of composition, indicating that the alkali ions are intimately and uniformly mixed rather than separated into lithium and sodium-rich domains. The activation energy from electrical conductivity shows a distinct maximum at the central composition (x = 0.5), whereas the local activation energy for lithium motion determined from NMR shows only a smaller but monotonic increase as the lithium-content decreases.


Optics Express | 2005

New model for light propagation in highly inhomogeneous polydisperse turbid media with applications in spray diagnostics

Edouard Berrocal; Igor Meglinski; Mark Jermy

Modern optical diagnostics for quantitative characterization of polydisperse sprays and other aerosols which contain a wide range of droplet size encounter difficulties in the dense regions due to the multiple scattering of laser radiation with the surrounding droplets. The accuracy and efficiency of optical measurements can only be improved if the radiative transfer within such polydisperse turbid media is understood. A novel Monte Carlo code has been developed for modeling of optical radiation propagation in inhomogeneous polydisperse scattering media with typical drop size ranging from 2 microm to 200 microm in diameter. We show how strong variations of both particle size distribution and particle concentration within a 3D scattering medium can be taken into account via the Monte Carlo approach. A new approximation which reduces ~20 times the computational memory space required to determine the phase function is described. The approximation is verified by considering four log-normal drop size distributions. It is found valid for particle sizes in the range of 10-200 microm with increasing errors, due to additional photons scattered at large angles, as the number of particles below than 10 microm increases. The technique is applied to the simulation of typical planar Mie imaging of a hollow cone spray. Simulated and experimental images are compared and shown to agree well. The code has application in developing and testing new optical diagnostics for complex scattering media such as dense sprays.


Journal of Computational Physics | 2009

An improved Quiet Direct Simulation method for Eulerian fluids using a second-order scheme

Matthew R. Smith; H. M. Cave; Jong-Shinn Wu; Mark Jermy; Y.-S. Chen

In this paper, a second-order scheme for the Quiet Direct Simulation (QDS) of Eulerian fluids is proposed. The QDS method replaces the random sampling method used in Direct Simulation Monte Carlo (DSMC) methods with a technique whereby particles are moved, have their properties distributed onto a mesh, are destroyed and then are recreated deterministically from the properties stored on the mesh using Gauss-Hermite quadrature weights and abscissas. Particles are permitted to move in physically realistic directions so flux exchange is not limited to cells sharing an adjacent interface as in conventional, direction decoupled finite volume solvers. In this paper the method is extended by calculating the fluxes of mass, momentum and energy between cells assuming a linear variation of density, temperature and velocity in each cell and using these fluxes to update the mass, velocity and internal energy carried by each particle. This Euler solver has several advantages including large dynamic range, no statistical scatter in the results, true direction fluxes to all nearby neighbors and is computationally inexpensive. The second-order method is found to reduce the numerical diffusion of QDS as demonstrated in several verification studies. These include unsteady shock tube flow, a two-dimensional blast wave and of the development of Mach 3 flow over a forward facing step in a wind tunnel, which are compared with previous results from the literature wherever is possible. Finally the implementation of QUIETWAVE, a rapid method of simulating blast events in urban environments, is introduced and the results of a test case are presented.


Applied Optics | 2005

Crossed source–detector geometry for a novel spray diagnostic: Monte Carlo simulation and analytical results

Edouard Berrocal; Dmitry Y. Churmakov; V. P. Romanov; Mark Jermy; Igor Meglinski

Sprays and other industrially relevant turbid media can be quantitatively characterized by light scattering. However, current optical diagnostic techniques generate errors in the intermediate scattering regime where the average number of light scattering is too great for the single scattering to be assumed, but too few for the diffusion approximation to be applied. Within this transitional single-to-multiple scattering regime, we consider a novel crossed source-detector geometry that allows the intensity of single scattering to be measured separately from the higher scattering orders. We verify Monte Carlo calculations that include the imperfections of the experiment against analytical results. We show quantitatively the influence of the detector numerical aperture and the angle between the source and the detector on the relative intensity of the scattering orders in the intermediate single-to-multiple scattering regime. Monte Carlo and analytical calculations of double light-scattering intensity are made with small particles that exhibit isotropic scattering. The agreement between Monte Carlo and analytical techniques validates use of the Monte Carlo approach in the intermediate scattering regime. Monte Carlo calculations are then performed for typical parameters of sprays and aerosols with anisotropic (Mie) scattering in the intermediate single-to-multiple scattering regime.


Forensic Science International | 2013

Blood drop size in passive dripping from weapons

N. Kabaliuk; Mark Jermy; Ken R. Morison; Theresa Stotesbury; Michael C. Taylor; E. Williams

Passive dripping, the slow dripping of blood under gravity, is responsible for some bloodstains found at crime scenes, particularly drip trails left by a person moving through the scene. Previous work by other authors has established relationships, under ideal conditions, between the size of the stain, the number of spines and satellite stains, the roughness of the surface, the size of the blood droplet and the height from which it falls. To apply these relationships to infer the height of fall requires independent knowledge of the size of the droplet. This work aims to measure the size of droplets falling from objects representative of hand-held weapons. Pig blood was used, with density, surface tension and viscosity controlled to fall within the normal range for human blood. Distilled water was also tested as a reference. Drips were formed from stainless steel objects with different roughnesses including cylinders of diameter between 10 and 100 mm, and flat plates. Small radius objects including a knife and a wrench were also tested. High speed images of the falling drops were captured. The primary blood drop size ranged from 4.15±0.11 mm up to 6.15±0.15 mm (depending on the object), with the smaller values from sharper objects. The primary drop size correlated only weakly with surface roughness, over the roughness range studied. The number of accompanying droplets increased with the object size, but no significant correlation with surface texture was observed. Dripping of blood produced slightly smaller drops, with more accompanying droplets, than dripping water.


Applied Optics | 2002

Simulating the effects of multiple scattering on images of dense sprays and particle fields

Mark Jermy; Andrew Allen

Most optical measurements in turbid media (including sprays, fogs, particulate and colloidal suspensions) assume single scattering of the detected photons. Multiple scattering introduces error, which has been quantified in very few systems. To quantify this error, we have written a flexible Monte Carlo photon transport simulation code capable of handling any three-dimensional geometry. Simulations of planar laser spray imaging with large, nonabsorbing particles show that up to 50% of the photons reaching the camera are multiply scattered. Because forward scattering dominates, the image is affected little. For particles with more absorption or with size closer to the wavelength of the light than those we have simulated, the effects are expected to be more serious.


Scientific Reports | 2015

Bloodstain Pattern Analysis: implementation of a fluid dynamic model for position determination of victims

Nick Laan; Karla G. de Bruin; Denise Slenter; Julie Wilhelm; Mark Jermy; Daniel Bonn

Bloodstain Pattern Analysis is a forensic discipline in which, among others, the position of victims can be determined at crime scenes on which blood has been shed. To determine where the blood source was investigators use a straight-line approximation for the trajectory, ignoring effects of gravity and drag and thus overestimating the height of the source. We determined how accurately the location of the origin can be estimated when including gravity and drag into the trajectory reconstruction. We created eight bloodstain patterns at one meter distance from the wall. The origin’s location was determined for each pattern with: the straight-line approximation, our method including gravity, and our method including both gravity and drag. The latter two methods require the volume and impact velocity of each bloodstain, which we are able to determine with a 3D scanner and advanced fluid dynamics, respectively. We conclude that by including gravity and drag in the trajectory calculation, the origin’s location can be determined roughly four times more accurately than with the straight-line approximation. Our study enables investigators to determine if the victim was sitting or standing, or it might be possible to connect wounds on the body to specific patterns, which is important for crime scene reconstruction.


Forensic Science International | 2014

Experimental validation of a numerical model for predicting the trajectory of blood drops in typical crime scene conditions, including droplet deformation and breakup, with a study of the effect of indoor air currents and wind on typical spatter drop trajectories

N. Kabaliuk; Mark Jermy; E. Williams; T.L. Laber; Michael C. Taylor

Bloodstain Pattern Analysis (BPA) provides information about events during an assault, e.g. location of participants, weapon type and number of blows. To extract the maximum information from spatter stains, the size, velocity and direction of the drop that produces each stain, and forces acting during flight, must be known. A numerical scheme for accurate modeling of blood drop flight, in typical crime scene conditions, including droplet oscillation, deformation and in-flight disintegration, was developed and validated against analytical and experimental data including passive blood drop oscillations, deformation at terminal velocity, cast-off and impact drop deformation and breakup features. 4th order Runge-Kutta timestepping was used with the Taylor Analogy Breakup (TAB) model and Pilch and Erdmans (1987) expression for breakup time. Experimental data for terminal velocities, oscillations, and deformation was obtained via digital high-speed imaging. A single model was found to describe drop behavior accurately in passive, cast off and impact scenarios. Terminal velocities of typical passive drops falling up to 8m, distances and times required to reach them were predicted within 5%. Initial oscillations of passive blood drops with diameters of 1mm<d<6mm falling up to 1.5m were studied. Predictions of oscillating passive drop aspect ratio were within 1.6% of experiment. Under typical crime scene conditions, the velocity of the drop within the first 1.5m of fall is affected little by drag, oscillation or deformation. Blood drops with diameter 0.4-4mm and velocity 1-15m/s cast-off from a rotating disk showed low deformation levels (Weber number<3). Drops formed by blunt impact 0.1-2mm in diameter at velocities of 14-25m/s were highly deformed (aspect ratios down to 0.4) and the larger impact blood drops (∼1-1.5mm in diameter) broke up at critical Weber numbers of 12-14. Most break-ups occurred within 10-20cm of the impact point. The model predicted deformation levels of cast-off and impact blood drops within 5% of experiment. Under typical crime scene conditions, few cast-off drops will break up in flight. However some impact-generated drops were seen to break up, some by the vibration, others by bag breakup. The validated model can be used to gain deep understanding of the processes leading to spatter stains, and can be used to answer questions about proposed scenarios, e.g. how far blood drops may travel, or how stain patterns are affected by winds and draughts.


Small Engine Technology Conference & Exposition | 2010

The Combustion and Performance of a Converted Direct Injection Compressed Natural Gas Engine using Spark Plug Fuel Injector

Taib Iskandar Mohamad; A.R. Yusoff; Shahrir Abdullah; Mark Jermy; Matthew Harrison; How Heoy Geok

Compressed natural gas (CNG) has been widely used as alternatives to gasoline and diesel in automotive engines. It is a very promising alternative fuel due to many reasons including adaptability to those engines, low in cost, and low emission levels. Unfortunately, when converting to CNG, engines usually suffer from reduced power and limited engine speed. These are due to volumetric loss and slower flame speed. Direct injection (DI) can mitigate these problems by injecting CNG after the intake valve closes, thus increasing volumetric efficiency. In addition, the high pressure gas jet can enhance the turbulence in the cylinder which is beneficial to the mixing and burning. However, conversion to direct fuel injection (DFI) requires a costly modification to the cylinder head to accommodate the direct injector and also can involve piston crown adjustment. This paper discusses a new alternative to converting to DFI using a device called Spark Plug Fuel Injector (SPFI). It is a combination of a fuel injector and a spark plug which fits into the engine block through the existing spark plug hole. With SPFI, conversion to DFI is simple, cheap and requires no modification to the original structure of the engine, except minor calibration to the ECU. The SPFI was installed on a 0.5 liter single cylinder engine and run at 1100 rpm, WOT and stoichiometric air-fuel ratio. Results showed that engine running with SPFI gained the advantage of significant increased volumetric efficiency, faster burning rate, higher output power and improved fuel conversion efficiency compared to port injection operation in the expense of reduced effective compression ratio.


International Journal of Experimental and Computational Biomechanics | 2009

Experimental investigation of carotid artery haemodynamics in an anatomically realistic model

Nicolas Buchmann; Mark Jermy; Chuong V. Nguyen

Fluid mechanic forces play a key role in the early development and progression of cardiovascular diseases, which predominantly occurs in areas of disturbed flow and low wall shear stress (WSS). In the present study, we perform particle image velocimetry (PIV) measurements in an anatomically realistic transparent flow phantom of a human carotid artery. Steady blood flow conditions are simulated and a novel interfacial PIV technique (iPIV) is introduced to measure WSS with increased spatial resolution and accuracy compared to conventional methods. The branching of the carotid artery introduces significant secondary flow motion with flow separation and reversal only occurring in the external carotid artery. Wall shear stress is measured along the inner and outer vessel walls and is on average higher in the internal carotid and lower in the external carotid artery. Furthermore, results are compared to those in a geometrical idealised model and with previously published WSS data.

Collaboration


Dive into the Mark Jermy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. M. Cave

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.-S. Wu

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

L. Underwood

University of Canterbury

View shared research outputs
Top Co-Authors

Avatar

Wei Hua Ho

University of South Africa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge