Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark L. Dell'Acqua is active.

Publication


Featured researches published by Mark L. Dell'Acqua.


Nature Cell Biology | 2003

Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock.

Mark T. Uhlik; Amy N. Abell; Nancy Lassignal Johnson; Weiyong Sun; Bruce D. Cuevas; Katherine E. Lobel-Rice; Eric A. Horne; Mark L. Dell'Acqua; Gary L. Johnson

Sensing the osmolarity of the environment is a critical response for all organisms. Whereas bacteria will migrate away from high osmotic conditions, most eukaryotic cells are not motile and use adaptive metabolic responses for survival. The p38 MAPK pathway is a crucial mediator of survival during cellular stress. We have discovered a novel scaffold protein that binds to actin, the GTPase Rac, and the upstream kinases MEKK3 and MKK3 in the p38 MAPK phospho-relay module. RNA interference (RNAi) demonstrates that MEKK3 and the scaffold protein are required for p38 activation in response to sorbitol-induced hyperosmolarity. FRET identifies a cytoplasmic complex of the MEKK3 scaffold protein that is recruited to dynamic actin structures in response to sorbitol treatment. Through its ability to bind actin, relocalize to Rac-containing membrane ruffles and its obligate requirement for p38 activation in response to sorbitol, we have termed this protein osmosensing scaffold for MEKK3 (OSM). The Rac–OSM–MEKK3–MKK3 complex is the mammalian counterpart of the CDC42–STE50–STE11–Pbs2 complex in Saccharomyces cerevisiae that is required for the regulation of p38 activity.


Neuron | 2007

AKAP79/150 Anchoring of Calcineurin Controls Neuronal L-Type Ca2+ Channel Activity and Nuclear Signaling

Seth F. Oliveria; Mark L. Dell'Acqua; William A. Sather

Neuronal L-type calcium channels contribute to dendritic excitability and activity-dependent changes in gene expression that influence synaptic strength. Phosphorylation-mediated enhancement of L-type channels containing the CaV1.2 pore-forming subunit is promoted by A-kinase anchoring proteins (AKAPs) that target cAMP-dependent protein kinase (PKA) to the channel. Although PKA increases L-type channel activity in dendrites and dendritic spines, the mechanism of enhancement in neurons remains poorly understood. Here, we show that CaV1.2 interacts directly with AKAP79/150, which binds both PKA and the Ca2+/calmodulin-activated phosphatase calcineurin (CaN). Cotargeting of PKA and CaN by AKAP79/150 confers bidirectional regulation of L-type current amplitude in transfected HEK293 cells and hippocampal neurons. However, anchored CaN dominantly suppresses PKA enhancement of the channel. Additionally, activation of the transcription factor NFATc4 via local Ca2+ influx through L-type channels requires AKAP79/150, suggesting that this signaling complex promotes neuronal L channel signaling to the nucleus through NFATc4.


The Journal of Neuroscience | 2006

cAMP-Dependent Protein Kinase Postsynaptic Localization Regulated by NMDA Receptor Activation through Translocation of an A-Kinase Anchoring Protein Scaffold Protein

Karen E. Smith; Emily S. Gibson; Mark L. Dell'Acqua

NMDA receptor-dependent long-term potentiation and long-term depression (LTD) involve changes in AMPA receptor activity and postsynaptic localization that are in part controlled by glutamate receptor 1 (GluR1) subunit phosphorylation. The scaffolding molecule A-kinase anchoring protein (AKAP)79/150 targets both the cAMP-dependent protein kinase (PKA) and protein phosphatase 2B/calcineurin (PP2B/CaN) to AMPA receptors to regulate GluR1 phosphorylation. Here, we report that brief NMDA receptor activation leads to persistent redistribution of AKAP79/150 and PKA-RII, but not PP2B/CaN, from postsynaptic membranes to the cytoplasm in hippocampal slices. Similar to LTD, AKAP79/150 redistribution requires PP2B/CaN activation and is accompanied by GluR1 dephosphorylation and internalization. Using fluorescence resonance energy transfer microscopy in hippocampal neurons, we demonstrate that PKA anchoring to AKAP79/150 is required for NMDA receptor regulation of PKA-RII localization and that movement of AKAP–PKA complexes underlies PKA redistribution. These findings suggest that LTD involves removal of AKAP79/150 and PKA from synapses in addition to activation of PP2B/CaN. Movement of AKAP79/150–PKA complexes from the synapse could further favor the actions of phosphatases in maintaining dephosphorylation of postsynaptic substrates, such as GluR1, that are important for LTD induction and expression. In addition, our observations demonstrate that AKAPs serve not solely as stationary anchors in cells but also as dynamic signaling components.


The Neuroscientist | 2011

AKAP Signaling Complexes in Regulation of Excitatory Synaptic Plasticity

Jennifer L. Sanderson; Mark L. Dell'Acqua

Plasticity at excitatory glutamatergic synapses in the central nervous system is believed to be critical for neuronal circuits to process and encode information, allowing animals to perform complex behaviors such as learning and memory. In addition, alterations in synaptic plasticity are associated with human diseases, including Alzheimer disease, epilepsy, chronic pain, drug addiction, and schizophrenia. Long-term potentiation (LTP) and depression (LTD) in the hippocampal region of the brain are two forms of synaptic plasticity that increase or decrease, respectively, the strength of synaptic transmission by postsynaptic AMPA-type glutamate receptors. Both LTP and LTD are induced by activation of NMDA-type glutamate receptors but differ in the level and duration of Ca2+ influx through the NMDA receptor and the subsequent engagement of downstream signaling by protein kinases, including PKA, PKC, and CaMKII, and phosphatases, including PP1 and calcineurin-PP2B (CaN). This review addresses the important emerging roles of the A-kinase anchoring protein family of scaffold proteins in regulating localization of PKA and other kinases and phosphatases to postsynaptic multiprotein complexes that control NMDA and AMPA receptor function during LTP and LTD.


Journal of Cell Biology | 2003

Imaging kinase–AKAP79–phosphatase scaffold complexes at the plasma membrane in living cells using FRET microscopy

Seth F. Oliveria; Lisa L. Gomez; Mark L. Dell'Acqua

Scaffold, anchoring, and adaptor proteins coordinate the assembly and localization of signaling complexes providing efficiency and specificity in signal transduction. The PKA, PKC, and protein phosphatase-2B/calcineurin (CaN) scaffold protein A–kinase anchoring protein (AKAP) 79 is localized to excitatory neuronal synapses where it is recruited to glutamate receptors by interactions with membrane-associated guanylate kinase (MAGUK) scaffold proteins. Anchored PKA and CaN in these complexes could have important functions in regulating glutamate receptors in synaptic plasticity. However, direct evidence for the assembly of complexes containing PKA, CaN, AKAP79, and MAGUKs in intact cells has not been available. In this report, we use immunofluorescence and fluorescence resonance energy transfer (FRET) microscopy to demonstrate membrane cytoskeleton–localized assembly of this complex. Using FRET, we directly observed binding of CaN catalytic A subunit (CaNA) and PKA-RII subunits to membrane-targeted AKAP79. We also detected FRET between CaNA and PKA-RII bound simultaneously to AKAP79 within 50 Å of each other, thus providing the first direct evidence of a ternary kinase–scaffold–phosphatase complex in living cells. This finding of AKAP-mediated PKA and CaN colocalization on a nanometer scale gives new appreciation to the level of compartmentalized signal transduction possible within scaffolds. Finally, we demonstrated AKAP79-regulated membrane localization of the MAGUK synapse-associated protein 97 (SAP97), suggesting that AKAP79 functions to organize even larger signaling complexes.


The Journal of Neuroscience | 2010

CaMKII “Autonomy” Is Required for Initiating But Not for Maintaining Neuronal Long-Term Information Storage

Isabelle Buard; Steven J. Coultrap; Ronald K. Freund; Yong-Seok Lee; Mark L. Dell'Acqua; Alcino J. Silva; K. Ulrich Bayer

Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) “autonomy” (T286-autophosphorylation-induced Ca2+-independent activity) is required for long-term potentiation (LTP) and for learning and memory, as demonstrated by CaMKII T286A mutant mice. The >20-year-old hypothesis that CaMKII stimulation is required for LTP induction, while CaMKII autonomy is required for LTP maintenance was recently supported using the cell-penetrating fusion-peptide inhibitor antCN27. However, we demonstrate here that ant/penetratin fusion to CN27 compromised CaMKII-selectivity, by enhancing a previously unnoticed direct binding of CaM to ant/penetratin. In contrast to antCN27, the improved cell-penetrating inhibitor tatCN21 (5 μm) showed neither CaM binding nor inhibition of basal synaptic transmission. In vitro, tatCN21 inhibited stimulated and autonomous CaMKII activity with equal potency. In rat hippocampal slices, tatCN21 inhibited LTP induction, but not LTP maintenance. Correspondingly, tatCN21 also inhibited learning, but not memory storage or retrieval in a mouse in vivo model. Thus, CaMKII autonomy provides a short-term molecular memory that is important in the signal computation leading to memory formation, but is not required as long-term memory store.


The Journal of Neuroscience | 2007

Phospholipase C Is Required for Changes in Postsynaptic Structure and Function Associated with NMDA Receptor-Dependent Long-Term Depression

Eric A. Horne; Mark L. Dell'Acqua

NMDA receptor (NMDAR)-dependent hippocampal synaptic plasticity underlying learning and memory coordinately regulates dendritic spine structure and AMPA receptor (AMPAR) postsynaptic strength through poorly understood mechanisms. Induction of long-term depression (LTD) activates protein phosphatase 2B/calcineurin (CaN), leading to dendritic spine shrinkage through actin depolymerization and AMPAR depression through receptor dephosphorylation and internalization. The scaffold proteins A-kinase-anchoring protein 79/150 (AKAP79/150) and postsynaptic density 95 (PSD95) form a complex that controls the opposing actions of the cAMP-dependent protein kinase (PKA) and CaN in regulation of AMPAR phosphorylation. The AKAP79/150–PSD95 complex is disrupted in hippocampal neurons during LTD coincident with internalization of AMPARs, decreases in PSD95 levels, and loss of AKAP79/150 and PKA from spines. AKAP79/150 is targeted to spines through binding F-actin and the phospholipid phosphatidylinositol-(4,5)-bisphosphate (PIP2). Previous electrophysiological studies have demonstrated that inhibition of phospholipase C (PLC)-catalyzed hydrolysis of PIP2 inhibits NMDAR-dependent LTD; however, the signaling mechanisms that link PLC activation to alterations in dendritic spine structure and AMPAR function in LTD are unknown. We show here that NMDAR stimulation of PLC in cultured hippocampal neurons is necessary for AKAP79/150 loss from spines and depolymerization of spine actin. Importantly, we demonstrate that NMDAR activation of PLC is also necessary for decreases in spine PSD95 levels and AMPAR internalization. Thus, PLC signaling is required for structural and functional changes in spine actin, PSD scaffolding, and AMPAR trafficking underlying postsynaptic expression of LTD.


The Journal of Neuroscience | 2012

AKAP150-Anchored Calcineurin Regulates Synaptic Plasticity by Limiting Synaptic Incorporation of Ca2+-Permeable AMPA Receptors

Jennifer L. Sanderson; Jessica A. Gorski; Emily S. Gibson; Philip Lam; Ronald K. Freund; Wallace S. Chick; Mark L. Dell'Acqua

AMPA receptors (AMPARs) are tetrameric ion channels assembled from GluA1–GluA4 subunits that mediate the majority of fast excitatory synaptic transmission in the brain. In the hippocampus, most synaptic AMPARs are composed of GluA1/2 or GluA2/3 with the GluA2 subunit preventing Ca2+ influx. However, a small number of Ca2+-permeable GluA1 homomeric receptors reside in extrasynaptic locations where they can be rapidly recruited to synapses during synaptic plasticity. Phosphorylation of GluA1 S845 by the cAMP-dependent protein kinase (PKA) primes extrasynaptic receptors for synaptic insertion in response to NMDA receptor Ca2+ signaling during long-term potentiation (LTP), while phosphatases dephosphorylate S845 and remove synaptic and extrasynaptic GluA1 during long-term depression (LTD). PKA and the Ca2+-activated phosphatase calcineurin (CaN) are targeted to GluA1 through binding to A-kinase anchoring protein 150 (AKAP150) in a complex with PSD-95, but we do not understand how the opposing activities of these enzymes are balanced to control plasticity. Here, we generated AKAP150ΔPIX knock-in mice to selectively disrupt CaN anchoring in vivo. We found that AKAP150ΔPIX mice lack LTD but express enhanced LTP at CA1 synapses. Accordingly, basal GluA1 S845 phosphorylation is elevated in AKAP150ΔPIX hippocampus, and LTD-induced dephosphorylation and removal of GluA1, AKAP150, and PSD-95 from synapses are impaired. In addition, basal synaptic activity of GluA2-lacking AMPARs is increased in AKAP150ΔPIX mice and pharmacologic antagonism of these receptors restores normal LTD and inhibits the enhanced LTP. Thus, AKAP150-anchored CaN opposes PKA phosphorylation of GluA1 to restrict synaptic incorporation of Ca2+-permeable AMPARs both basally and during LTP and LTD.


Journal of Cell Biology | 2007

Organization of β-adrenoceptor signaling compartments by sympathetic innervation of cardiac myocytes

Olga G. Shcherbakova; Carl M. Hurt; Yang Xiang; Mark L. Dell'Acqua; Qi Zhang; Richard W. Tsien; Brian K. Kobilka

The sympathetic nervous system regulates cardiac function through the activation of adrenergic receptors (ARs). β1 and β2ARs are the primary sympathetic receptors in the heart and play different roles in regulating cardiac contractile function and remodeling in response to injury. In this study, we examine the targeting and trafficking of β1 and β2ARs at cardiac sympathetic synapses in vitro. Sympathetic neurons form functional synapses with neonatal cardiac myocytes in culture. The myocyte membrane develops into specialized zones that surround contacting axons and contain accumulations of the scaffold proteins SAP97 and AKAP79/150 but are deficient in caveolin-3. The β1ARs are enriched within these zones, whereas β2ARs are excluded from them after stimulation of neuronal activity. The results indicate that specialized signaling domains are organized in cardiac myocytes at sites of contact with sympathetic neurons and that these domains are likely to play a role in the subtype-specific regulation of cardiac function by β1 and β2ARs in vivo.


Journal of Biological Chemistry | 2010

CaMKII autonomy is substrate-dependent and further stimulated by Ca2+/calmodulin.

Steven J. Coultrap; Isabelle Buard; Jacqueline R. Kulbe; Mark L. Dell'Acqua; K. Ulrich Bayer

A hallmark feature of Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) regulation is the generation of Ca2+-independent autonomous activity by Thr-286 autophosphorylation. CaMKII autonomy has been regarded a form of molecular memory and is indeed important in neuronal plasticity and learning/memory. Thr-286-phosphorylated CaMKII is thought to be essentially fully active (∼70–100%), implicating that it is no longer regulated and that its dramatically increased Ca2+/CaM affinity is of minor functional importance. However, this study shows that autonomy greater than 15–25% was the exception, not the rule, and required a special mechanism (T-site binding; by the T-substrates AC2 or NR2B). Autonomous activity toward regular R-substrates (including tyrosine hydroxylase and GluR1) was significantly further stimulated by Ca2+/CaM, both in vitro and within cells. Altered Km and Vmax made autonomy also substrate- (and ATP) concentration-dependent, but only over a narrow range, with remarkable stability at physiological concentrations. Such regulation still allows molecular memory of previous Ca2+ signals, but prevents complete uncoupling from subsequent cellular stimulation.

Collaboration


Dive into the Mark L. Dell'Acqua's collaboration.

Top Co-Authors

Avatar

John D. Scott

University of Washington

View shared research outputs
Top Co-Authors

Avatar

William A. Sather

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Emily S. Gibson

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer L. Sanderson

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seth F. Oliveria

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip J. Dittmer

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge