Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark L. Farman is active.

Publication


Featured researches published by Mark L. Farman.


Nature | 2005

Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae

James E. Galagan; Sarah E. Calvo; Christina A. Cuomo; Li-Jun Ma; Jennifer R. Wortman; Serafim Batzoglou; Su-In Lee; Meray Baştürkmen; Christina C. Spevak; John Clutterbuck; Vladimir V. Kapitonov; Jerzy Jurka; Claudio Scazzocchio; Mark L. Farman; Jonathan Butler; Seth Purcell; Steve Harris; Gerhard H. Braus; Oliver W. Draht; Silke Busch; Christophe d'Enfert; Christiane Bouchier; Gustavo H. Goldman; Deborah Bell-Pedersen; Sam Griffiths-Jones; John H. Doonan; Jae-Hyuk Yu; Kay Vienken; Arnab Pain; Michael Freitag

The aspergilli comprise a diverse group of filamentous fungi spanning over 200 million years of evolution. Here we report the genome sequence of the model organism Aspergillus nidulans, and a comparative study with Aspergillus fumigatus, a serious human pathogen, and Aspergillus oryzae, used in the production of sake, miso and soy sauce. Our analysis of genome structure provided a quantitative evaluation of forces driving long-term eukaryotic genome evolution. It also led to an experimentally validated model of mating-type locus evolution, suggesting the potential for sexual reproduction in A. fumigatus and A. oryzae. Our analysis of sequence conservation revealed over 5,000 non-coding regions actively conserved across all three species. Within these regions, we identified potential functional elements including a previously uncharacterized TPP riboswitch and motifs suggesting regulation in filamentous fungi by Puf family genes. We further obtained comparative and experimental evidence indicating widespread translational regulation by upstream open reading frames. These results enhance our understanding of these widely studied fungi as well as provide new insight into eukaryotic genome evolution and gene regulation.


Nature | 2005

The genome sequence of the rice blast fungus Magnaporthe grisea

Ralph A. Dean; Nicholas J. Talbot; Daniel J. Ebbole; Mark L. Farman; Thomas K. Mitchell; Marc J. Orbach; Michael R. Thon; Resham Kulkarni; Jin-Rong Xu; Huaqin Pan; Nick D. Read; Yong-Hwan Lee; Ignazio Carbone; Doug Brown; Yeon Yee Oh; Nicole M. Donofrio; Jun Seop Jeong; Darren M. Soanes; Slavica Djonović; Elena Kolomiets; Cathryn J. Rehmeyer; Weixi Li; Michael Harding; Soonok Kim; Marc-Henri Lebrun; Heidi U. Böhnert; Sean Coughlan; Jonathan Butler; Sarah E. Calvo; Li-Jun Ma

Magnaporthe grisea is the most destructive pathogen of rice worldwide and the principal model organism for elucidating the molecular basis of fungal disease of plants. Here, we report the draft sequence of the M. grisea genome. Analysis of the gene set provides an insight into the adaptations required by a fungus to cause disease. The genome encodes a large and diverse set of secreted proteins, including those defined by unusual carbohydrate-binding domains. This fungus also possesses an expanded family of G-protein-coupled receptors, several new virulence-associated genes and large suites of enzymes involved in secondary metabolism. Consistent with a role in fungal pathogenesis, the expression of several of these genes is upregulated during the early stages of infection-related development. The M. grisea genome has been subject to invasion and proliferation of active transposable elements, reflecting the clonal nature of this fungus imposed by widespread rice cultivation.


Nature | 2005

Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus.

William C. Nierman; Arnab Pain; Michael J. Anderson; Jennifer R. Wortman; H. Stanley Kim; Javier Arroyo; Matthew Berriman; Keietsu Abe; David B. Archer; Clara Bermejo; Joan W. Bennett; Paul Bowyer; Dan Chen; Matthew Collins; Richard Coulsen; Robert Davies; Paul S. Dyer; Mark L. Farman; Nadia Fedorova; Natalie D. Fedorova; Tamara V. Feldblyum; Reinhard Fischer; Nigel Fosker; Audrey Fraser; José Luis García; María José García; Ariette Goble; Gustavo H. Goldman; Katsuya Gomi; Sam Griffith-Jones

Aspergillus fumigatus is exceptional among microorganisms in being both a primary and opportunistic pathogen as well as a major allergen. Its conidia production is prolific, and so human respiratory tract exposure is almost constant. A. fumigatus is isolated from human habitats and vegetable compost heaps. In immunocompromised individuals, the incidence of invasive infection can be as high as 50% and the mortality rate is often about 50% (ref. 2). The interaction of A. fumigatus and other airborne fungi with the immune system is increasingly linked to severe asthma and sinusitis. Although the burden of invasive disease caused by A. fumigatus is substantial, the basic biology of the organism is mostly obscure. Here we show the complete 29.4-megabase genome sequence of the clinical isolate Af293, which consists of eight chromosomes containing 9,926 predicted genes. Microarray analysis revealed temperature-dependent expression of distinct sets of genes, as well as 700 A. fumigatus genes not present or significantly diverged in the closely related sexual species Neosartorya fischeri, many of which may have roles in the pathogenicity phenotype. The Af293 genome sequence provides an unparalleled resource for the future understanding of this remarkable fungus.


Nature | 2006

Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis

Jörg Kämper; Regine Kahmann; Michael Bölker; Li-Jun Ma; Thomas Brefort; Barry J. Saville; Flora Banuett; James W. Kronstad; Scott E. Gold; Olaf Müller; Michael H. Perlin; Han A. B. Wösten; Ronald P. de Vries; José Ruiz-Herrera; Cristina G. Reynaga-Peña; Karen M. Snetselaar; Michael McCann; José Pérez-Martín; Michael Feldbrügge; Christoph W. Basse; Gero Steinberg; Jose I. Ibeas; William Holloman; Plinio Guzman; Mark L. Farman; Jason E. Stajich; Rafael Sentandreu; Juan M. González-Prieto; John C. Kennell; Lázaro Molina

Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant–microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no ‘true’ virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus)

Jason E. Stajich; Sarah K. Wilke; Dag Ahrén; Chun Hang Au; Bruce W. Birren; Mark Borodovsky; Claire Burns; Björn Canbäck; Lorna A. Casselton; Chi Keung Cheng; Jixin Deng; Fred S. Dietrich; David C. Fargo; Mark L. Farman; Allen C. Gathman; Jonathan M. Goldberg; Roderic Guigó; Patrick J. Hoegger; James Hooker; Ashleigh Huggins; Timothy Y. James; Takashi Kamada; Sreedhar Kilaru; Chinnapa Kodira; Ursula Kües; Doris M. Kupfer; Hoi Shan Kwan; Alexandre Lomsadze; Weixi Li; Walt W. Lilly

The mushroom Coprinopsis cinerea is a classic experimental model for multicellular development in fungi because it grows on defined media, completes its life cycle in 2 weeks, produces some 108 synchronized meiocytes, and can be manipulated at all stages in development by mutation and transformation. The 37-megabase genome of C. cinerea was sequenced and assembled into 13 chromosomes. Meiotic recombination rates vary greatly along the chromosomes, and retrotransposons are absent in large regions of the genome with low levels of meiotic recombination. Single-copy genes with identifiable orthologs in other basidiomycetes are predominant in low-recombination regions of the chromosome. In contrast, paralogous multicopy genes are found in the highly recombining regions, including a large family of protein kinases (FunK1) unique to multicellular fungi. Analyses of P450 and hydrophobin gene families confirmed that local gene duplications drive the expansions of paralogous copies and the expansions occur in independent lineages of Agaricomycotina fungi. Gene-expression patterns from microarrays were used to dissect the transcriptional program of dikaryon formation (mating). Several members of the FunK1 kinase family are differentially regulated during sexual morphogenesis, and coordinate regulation of adjacent duplications is rare. The genomes of C. cinerea and Laccaria bicolor, a symbiotic basidiomycete, share extensive regions of synteny. The largest syntenic blocks occur in regions with low meiotic recombination rates, no transposable elements, and tight gene spacing, where orthologous single-copy genes are overrepresented. The chromosome assembly of C. cinerea is an essential resource in understanding the evolution of multicellularity in the fungi.


PLOS Genetics | 2013

Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci

Christopher L. Schardl; Carolyn A. Young; Uljana Hesse; Stefan G. Amyotte; Kalina Andreeva; Patrick J. Calie; Damien J. Fleetwood; David Haws; Neil Moore; Birgitt Oeser; Daniel G. Panaccione; Kathryn Schweri; Christine R. Voisey; Mark L. Farman; Jerzy W. Jaromczyk; Bruce A. Roe; Donal M. O'Sullivan; Barry Scott; Paul Tudzynski; Zhiqiang An; Elissaveta G. Arnaoudova; Charles T. Bullock; Nikki D. Charlton; Li Chen; Murray P. Cox; Randy D. Dinkins; Simona Florea; Anthony E. Glenn; Anna Gordon; Ulrich Güldener

The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some—including the infamous ergot alkaloids—have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.


Phytopathology | 2003

Field Resistance to Strobilurin (QoI) Fungicides in Pyricularia grisea Caused by Mutations in the Mitochondrial Cytochrome b Gene

Yun-Sik Kim; Edward W. Dixon; Paul C. Vincelli; Mark L. Farman

ABSTRACT Gray leaf spot caused by Pyricularia grisea is a highly destructive disease of perennial ryegrass turf. Control of gray leaf spot is dependent on the use of preventative fungicide treatments. Strobilurin-based (Q(o)I) fungicides, which inhibit the cytochrome bc(1) respiratory complex, have proven to be very effective against gray leaf spot. However, in August 2000, disease was diagnosed in Q(o)I-treated perennial ryegrass turf on golf courses in Lexington, KY, Champaign, IL, and Bloomington, IL. To determine if resistance was due to a mutation in the fungicide target, the cytochrome b gene (CYTB) was amplified from baseline and resistant isolates. Nucleotide sequence analysis revealed an intronless coding region of 1,179 bp. Isolates that were resistant to Q(o)I fungicides possessed one of two different mutant alleles, each of which carried a single point mutation. The first mutant allele had a guanine-to-cytosine transition at nucleotide position +428, resulting in a replacement of glycine 143 by alanine (G143A). Mutant allele two exhibited a cytosine-to-adenine transversion at position +387, causing a phenylalanine-to-leucine change (F129L). Cleavable amplified polymorphic sequence analysis revealed that neither mutation was present in a collection of baseline isolates collected before Q(o)I fungicide use and indicated that suspected Q(o)I- resistant isolates found in 2001 in Indiana and Maryland possessed the F129L mutation. The Pyricularia grisea isolates possessing the G143A substitution were significantly more resistant to azoxystrobin and trifloxystrobin, in vitro, than those having F129L. DNA fingerprinting of resistant isolates revealed that the mutations occurred in just five genetic backgrounds, suggesting that field resistance to the Q(o)I fungicides in Pyricularia grisea is due to a small number of ancestral mutations.


Molecular Plant-microbe Interactions | 2007

pSITE Vectors for Stable Integration or Transient Expression of Autofluorescent Protein Fusions in Plants: Probing Nicotiana benthamiana-Virus Interactions

Romit Chakrabarty; Rituparna Banerjee; Sang-Min Chung; Mark L. Farman; Vitaly Citovsky; Saskia A. Hogenhout; Tzvi Tzfira; Michael M. Goodin

Plant functional proteomics research is increasingly dependent upon vectors that facilitate high-throughput gene cloning and expression of fusions to autofluorescent proteins. Here, we describe the pSITE family of plasmids, a new set of Agrobacterium binary vectors, suitable for the stable integration or transient expression of various autofluorescent protein fusions in plant cells. The pSITE vectors permit single-step Gateway-mediated recombination cloning for construction of binary vectors that can be used directly in transient expression studies or for the selection of transgenic plants on media containing kanamycin. These vectors can be used to express native proteins or fusions to monmeric red fluorescent protein or the enhanced green fluorescent protein and its cyan and yellow-shifted spectral variants. We have validated the vectors for use in transient expression assays and for the generation of transgenic plants. Additionally, we have generated markers for fluorescent highlighting of actin filaments, chromatin, endoplasmic reticulum, and nucleoli. Finally, we show that pSITE vectors can be used for targeted gene expression in virus-infected cells, which should facilitate high-throughput characterization of protein dynamics in host-virus interactions.


Nucleic Acids Research | 2006

Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae

Cathryn J. Rehmeyer; Weixi Li; Motoaki Kusaba; Yun-Sik Kim; Doug Brown; Chuck Staben; Ralph A. Dean; Mark L. Farman

Eukaryotic pathogens of humans often evade the immune system by switching the expression of surface proteins encoded by subtelomeric gene families. To determine if plant pathogenic fungi use a similar mechanism to avoid host defenses, we sequenced the 14 chromosome ends of the rice blast pathogen, Magnaporthe oryzae. One telomere is directly joined to ribosomal RNA-encoding genes, at the end of the ∼2 Mb rDNA array. Two are attached to chromosome-unique sequences, and the remainder adjoin a distinct subtelomere region, consisting of a telomere-linked RecQ-helicase (TLH) gene flanked by several blocks of tandem repeats. Unlike other microbes, M.oryzae exhibits very little gene amplification in the subtelomere regions—out of 261 predicted genes found within 100 kb of the telomeres, only four were present at more than one chromosome end. Therefore, it seems unlikely that M.oryzae uses switching mechanisms to evade host defenses. Instead, the M.oryzae telomeres have undergone frequent terminal truncation, and there is evidence of extensive ectopic recombination among transposons in these regions. We propose that the M.oryzae chromosome termini play more subtle roles in host adaptation by promoting the loss of terminally-positioned genes that tend to trigger host defenses.


Toxins | 2013

Currencies of Mutualisms: Sources of Alkaloid Genes in Vertically Transmitted Epichloae

Christopher L. Schardl; Carolyn A. Young; Juan Pan; Simona Florea; Johanna E. Takach; Daniel G. Panaccione; Mark L. Farman; Jennifer S. Webb; Jolanta Jaromczyk; Nikki D. Charlton; Padmaja Nagabhyru; Li Chen; Chong Shi; Adrian Leuchtmann

The epichloae (Epichloë and Neotyphodium species), a monophyletic group of fungi in the family Clavicipitaceae, are systemic symbionts of cool-season grasses (Poaceae subfamily Poöideae). Most epichloae are vertically transmitted in seeds (endophytes), and most produce alkaloids that attack nervous systems of potential herbivores. These protective metabolites include ergot alkaloids and indole-diterpenes (tremorgens), which are active in vertebrate systems, and lolines and peramine, which are more specific against invertebrates. Several Epichloë species have been described which are sexual and capable of horizontal transmission, and most are vertically transmissible also. Asexual epichloae are mainly or exclusively vertically transmitted, and many are interspecific hybrids with genomic contributions from two or three ancestral Epichloë species. Here we employ genome-scale analyses to investigate the origins of biosynthesis gene clusters for ergot alkaloids (EAS), indole-diterpenes (IDT), and lolines (LOL) in 12 hybrid species. In each hybrid, the alkaloid-gene and housekeeping-gene relationships were congruent. Interestingly, hybrids frequently had alkaloid clusters that were rare in their sexual ancestors. Also, in those hybrids that had multiple EAS, IDT or LOL clusters, one cluster lacked some genes, usually for late pathway steps. Possible implications of these findings for the alkaloid profiles and endophyte ecology are discussed.

Collaboration


Dive into the Mark L. Farman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas K. Mitchell

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Ralph A. Dean

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doug Brown

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil Moore

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Weixi Li

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge