Mark L. Patchett
Massey University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark L. Patchett.
Natural Product Reports | 2013
Paul G. Arnison; Mervyn J. Bibb; Gabriele Bierbaum; Albert A. Bowers; Tim S. Bugni; Grzegorz Bulaj; Julio A. Camarero; Dominic J. Campopiano; Gregory L. Challis; Jon Clardy; Paul D. Cotter; David J. Craik; Michael J. Dawson; Elke Dittmann; Stefano Donadio; Pieter C. Dorrestein; Karl Dieter Entian; Michael A. Fischbach; John S. Garavelli; Ulf Göransson; Christian W. Gruber; Daniel H. Haft; Thomas K. Hemscheidt; Christian Hertweck; Colin Hill; Alexander R. Horswill; Marcel Jaspars; Wendy L. Kelly; Judith P. Klinman; Oscar P. Kuipers
This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.
Structure | 1999
Maria C. Bewley; Philip D. Jeffrey; Mark L. Patchett; Zoltan Kanyo; Edward N. Baker
BACKGROUND Arginase is a manganese-dependent enzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. In ureotelic animals arginase is the final enzyme of the urea cycle, but in many species it has a wider role controlling the use of arginine for other metabolic purposes, including the production of creatine, polyamines, proline and nitric oxide. Arginase activity is regulated by various small molecules, including the product L-ornithine. The aim of these structural studies was to test aspects of the catalytic mechanism and to investigate the structural basis of arginase inhibition. RESULTS We report here the crystal structures of arginase from Bacillus caldovelox at pH 5.6 and pH 8.5, and of binary complexes of the enzyme with L-arginine, L-ornithine and L-lysine at pH 8.5. The arginase monomer comprises a single compact alpha/beta domain that further associates into a hexameric quaternary structure. The binary complexes reveal a common mode of ligand binding, which places the substrate adjacent to the dimanganese centre. We also observe a conformational change that impacts on the active site and is coupled with the occupancy of an external site by guanidine or arginine. CONCLUSIONS The structures reported here clarify aspects of the active site and indicate key features of the catalytic mechanism, including substrate coordination to one of the manganese ions and an orientational role for a neighboring histidine residue. Stereospecificity for L-amino acids is found to depend on their precise recognition at the active-site rim. Identification of a second arginine-binding site, remote from the active site, and associated conformational changes lead us to propose a regulatory role for this site in substrate hydrolysis.
FEBS Letters | 2011
Judith Stepper; Shilpa Shastri; Trevor S. Loo; Joanne C. Preston; Petr Novák; Petr Man; Christopher H. Moore; Vladimír Havlíček; Mark L. Patchett; Gillian E. Norris
O‐glycosylation is a ubiquitous eukaryotic post‐translational modification, whereas early reports of S‐linked glycopeptides have never been verified. Prokaryotes also glycosylate proteins, but there are no confirmed examples of sidechain glycosylation in ribosomal antimicrobial polypeptides collectively known as bacteriocins. Here we show that glycocin F, a bacteriocin secreted by Lactobacillus plantarum KW30, is modified by an N‐acetylglucosamine β‐O‐linked to Ser18, and an N‐acetylhexosamine S‐linked to C‐terminal Cys43. The O‐linked N‐acetylglucosamine is essential for bacteriostatic activity, and the C‐terminus is required for full potency (IC50 2 nM). Genomic context analysis identified diverse putative glycopeptide bacteriocins in Firmicutes. One of these, the reputed lantibiotic sublancin, was shown to contain a hexose S‐linked to Cys22.
Structure | 2001
Andrew A. McCarthy; Heather M. Baker; Steven C. Shewry; Mark L. Patchett; Edward N. Baker
BACKGROUND Methylmalonyl-CoA epimerase (MMCE) is an essential enzyme in the breakdown of odd-numbered fatty acids and of the amino acids valine, isoleucine, and methionine. Present in many bacteria and in animals, it catalyzes the conversion of (2R)-methylmalonyl-CoA to (2S)-methylmalonyl-CoA, the substrate for the B12-dependent enzyme, methylmalonyl-CoA mutase. Defects in this pathway can result in severe acidosis and cause damage to the central nervous system in humans. RESULTS The crystal structure of MMCE from Propionibacterium shermanii has been determined at 2.0 A resolution. The MMCE monomer is folded into two tandem betaalphabetabetabeta modules that pack edge-to-edge to generate an 8-stranded beta sheet. Two monomers then pack back-to-back to create a tightly associated dimer. In each monomer, the beta sheet curves around to create a deep cleft, in the floor of which His12, Gln65, His91, and Glu141 provide a binding site for a divalent metal ion, as shown by the binding of Co2+. Modeling 2-methylmalonate into the active site identifies two glutamate residues as the likely essential bases for the epimerization reaction. CONCLUSIONS The betaalphabetabetabeta modules of MMCE correspond with those found in several other proteins, including bleomycin resistance protein, glyoxalase I, and a family of extradiol dioxygenases. Differences in connectivity are consistent with the evolution of these very different proteins from a common precursor by mechanisms of gene duplication and domain swapping. The metal binding residues also align precisely, and striking structural similarities between MMCE and glyoxalase I suggest common mechanisms in their respective epimerization and isomerization reactions.
Biochemistry | 2011
Hariprasad Venugopal; Patrick J. B. Edwards; Martin Schwalbe; Jolyon K. Claridge; David S. Libich; Judith Stepper; Trevor S. Loo; Mark L. Patchett; Gillian E. Norris; Steven M. Pascal
Bacteriocins are bacterial peptides with specific activity against competing species. They hold great potential as natural preservatives and for their probiotic effects. We show here nuclear magnetic resonance-based evidence that glycocin F, a 43-amino acid bacteriocin from Lactobacillus plantarum, contains two β-linked N-acetylglucosamine moieties, attached via side chain linkages to a serine via oxygen, and to a cysteine via sulfur. The latter linkage is novel and has helped to establish a new type of post-translational modification, the S-linked sugar. The peptide conformation consists primarily of two α-helices held together by a pair of nested disulfide bonds. The serine-linked sugar is positioned on a short loop sequentially connecting the two helices, while the cysteine-linked sugar presents at the end of a long disordered C-terminal tail. The differing chemical and conformational stabilities of the two N-actetylglucosamine moieties provide clues about the possible mode of action of this bacteriostatic peptide.
Journal of Biological Chemistry | 2011
Penelope J. Cross; R.J. Dobson; Mark L. Patchett; Emily J. Parker
The first step of the shikimate pathway for aromatic amino acid biosynthesis is catalyzed by 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Thermotoga maritima DAH7PS (TmaDAH7PS) is tetrameric, with monomer units comprised of a core catalytic (β/α)8 barrel and an N-terminal domain. This enzyme is inhibited strongly by tyrosine and to a lesser extent by the presence of phenylalanine. A truncated mutant of TmaDAH7PS lacking the N-terminal domain was catalytically more active and completely insensitive to tyrosine and phenylalanine, consistent with a role for this domain in allosteric inhibition. The structure of this protein was determined to 2.0 Å. In contrast to the wild-type enzyme, this enzyme is dimeric. Wild-type TmaDAH7PS was co-crystallized with tyrosine, and the structure of this complex was determined to a resolution of 2.35 Å. Tyrosine was found to bind at the interface between two regulatory N-terminal domains, formed from diagonally located monomers of the tetramer, revealing a major reorganization of the regulatory domain with respect to the barrel relative to unliganded enzyme. This significant conformational rearrangement observed in the crystal structures was also clearly evident from small angle X-ray scattering measurements recorded in the presence and absence of tyrosine. The closed conformation adopted by the protein on tyrosine binding impedes substrate entry into the neighboring barrel, revealing an unusual tyrosine-controlled gating mechanism for allosteric control of this enzyme.
Biochemical Journal | 2005
Celia J. Webby; Mark L. Patchett; Emily J. Parker
DAH7P (3-Deoxy-D-arabino-heptulosonate 7-phosphate) synthase catalyses the condensation reaction between phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate (E4P) as the first committed step in the biosynthesis of aromatic compounds in plants and micro-organisms. Previous work has identified two families of DAH7P synthases based on sequence similarity and molecular mass, with the majority of the mechanistic and structural studies being carried out on the type I paralogues from Escherichia coli. Whereas a number of organisms possess genes encoding both type I and type II DAH7P synthases, the pathogen Helicobacter pylori has only a single, type II, enzyme. Recombinant DAH7P synthase from H. pylori was partially solubilized by co-expression with chaperonins GroEL/GroES in E. coli, and purified to homogeneity. The enzyme reaction follows an ordered sequential mechanism with the following kinetic parameters: K(m) (PEP), 3 microM; K(m) (E4P), 6 microM; and kcat, 3.3 s(-1). The enzyme reaction involves interaction of the si face of PEP with the re face of E4P. H. pylori DAH7P synthase is not inhibited by phenylalanine, tyrosine, tryptophan or chorismate. EDTA inactivates the enzyme, and activity is restored by a range of bivalent metal ions, including (in order of decreasing effectiveness) Co2+, Mn2+, Ca2+, Mg2+, Cu2+ and Zn2+. Analysis of type II DAH7P synthase sequences reveals several highly conserved motifs, and comparison with the type I enzymes suggests that catalysis by these two enzyme types occurs on a similar active-site scaffold and that the two DAH7P synthase families may indeed be distantly related.
FEBS Letters | 1996
Maria C. Bewley; J.Shaun Lott; Edward N. Baker; Mark L. Patchett
The gene for the thermostable arginase from the thermophilic bacterium ‘Bacillus caldovelox’ has been cloned and sequenced. Expression of recombinant arginase at high levels has been achieved in E. coli using an inducible T7 RNA polymerase‐based system. A facile purification procedure incorporating a heat‐treatment step yielded 0.2 g of recombinant arginase per litre of induced culture. The kinetic properties of the purified recombinant protein are essentially identical to the native enzyme. The recombinant protein has been crystallised and one crystal form is isomorphous to crystals of the native protein.
Environmental Microbiology | 2016
Filomena Ng; Sandra Kittelmann; Mark L. Patchett; Graeme T. Attwood; Peter H. Janssen; Jasna Rakonjac; Dragana Gagic
Symbiotic associations are ubiquitous in the microbial world and have a major role in shaping the evolution of both partners. One of the most interesting mutualistic relationships exists between protozoa and methanogenic archaea in the fermentative forestomach (rumen) of ruminant animals. Methanogens reside within and on the surface of protozoa as symbionts, and interspecies hydrogen transfer is speculated to be the main driver for physical associations observed between the two groups. In silico analyses of several rumen methanogen genomes have previously shown that up to 5% of genes encode adhesin-like proteins, which may be central to rumen interspecies attachment. We hypothesized that adhesin-like proteins on methanogen cell surfaces facilitate attachment to protozoal hosts. Using phage display technology, we have identified a protein (Mru_1499) from Methanobrevibacter ruminantium M1 as an adhesin that binds to a broad range of rumen protozoa (including the genera Epidinium and Entodinium). This unique adhesin also binds the cell surface of the bacterium Butyrivibrio proteoclasticus, suggesting a broad adhesion spectrum for this protein.
Chemistry: A European Journal | 2015
Margaret A. Brimble; Patrick J. B. Edwards; Paul W. R. Harris; Gillian E. Norris; Mark L. Patchett; Tom H. Wright; Sung-Hyun Yang; Sarah Carley
The first total synthesis of glycocin F, a uniquely diglycosylated antimicrobial peptide bearing a rare S-linked N-acetylglucosamine (GlcNAc) moiety in addition to an O-linked GlcNAc, has been accomplished using a native chemical ligation strategy. The synthetic and naturally occurring peptides were compared by HPLC, mass spectrometry, NMR and CD spectroscopy, and their stability towards chymotrypsin digestion and antimicrobial activity were measured. This is the first comprehensive structural and functional comparison of a naturally occurring glycocin with an active synthetic analogue.