Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Larance is active.

Publication


Featured researches published by Mark Larance.


Journal of Biological Chemistry | 2005

Characterization of the Role of the Rab GTPase-activating Protein AS160 in Insulin-regulated GLUT4 Trafficking

Mark Larance; Georg Ramm; Jacqueline Stöckli; Ellen M. van Dam; Stephanie Winata; Valerie C. Wasinger; Fiona Simpson; Michael W. Graham; Jagath R. Junutula; Michael Guilhaus; David E. James

Insulin stimulates the translocation of the glucose transporter GLUT4 from intracellular vesicles to the plasma membrane. In the present study we have conducted a comprehensive proteomic analysis of affinity-purified GLUT4 vesicles from 3T3-L1 adipocytes to discover potential regulators of GLUT4 trafficking. In addition to previously identified components of GLUT4 storage vesicles including the insulin-regulated aminopeptidase insulin-regulated aminopeptidase and the vesicle soluble N-ethylmaleimide factor attachment protein (v-SNARE) VAMP2, we have identified three new Rab proteins, Rab10, Rab11, and Rab14, on GLUT4 vesicles. We have also found that the putative Rab GTPase-activating protein AS160 (Akt substrate of 160 kDa) is associated with GLUT4 vesicles in the basal state and dissociates in response to insulin. This association is likely to be mediated by the cytosolic tail of insulin-regulated aminopeptidase, which interacted both in vitro and in vivo with AS160. Consistent with an inhibitory role of AS160 in the basal state, reduced expression of AS160 in adipocytes using short hairpin RNA increased plasma membrane levels of GLUT4 in an insulin-independent manner. These findings support an important role for AS160 in the insulin regulated trafficking of GLUT4.


Journal of Biological Chemistry | 2006

A Role for 14-3-3 in Insulin-stimulated GLUT4 Translocation through Its Interaction with the RabGAP AS160

Georg Ramm; Mark Larance; Michael Guilhaus; David E. James

Translocation of the insulin-regulated glucose transporter GLUT4 to the cell surface is dependent on the phosphatidylinositol 3-kinase/Akt pathway. The RabGAP (Rab GTPase-activating protein) AS160 (Akt substrate of 160 kDa) is a direct substrate of Akt and plays an essential role in the regulation of GLUT4 trafficking. We have used liquid chromatography tandem mass spectrometry to identify several 14-3-3 isoforms as AS160-interacting proteins. 14-3-3 proteins interact with AS160 in an insulin- and Akt-dependent manner via an Akt phosphorylation site, Thr-642. This correlates with the dominant negative effect of both the AS160T642A and the AS1604P mutants on insulin-stimulated GLUT4 translocation. Introduction of a constitutive 14-3-3 binding site into AS1604P restored 14-3-3 binding without disrupting AS160-IRAP (insulin-responsive amino peptidase) interaction and reversed the inhibitory effect of AS1604P on GLUT4 translocation. These data show that the insulin-dependent association of 14-3-3 with AS160 plays an important role in GLUT4 trafficking in adipocytes.


Nature Reviews Molecular Cell Biology | 2015

Multidimensional proteomics for cell biology

Mark Larance; Angus I. Lamond

The proteome is a dynamic system in which each protein has interconnected properties — dimensions — that together contribute to the phenotype of a cell. Measuring these properties has proved challenging owing to their diversity and dynamic nature. Advances in mass spectrometry-based proteomics now enable the measurement of multiple properties for thousands of proteins, including their abundance, isoform expression, turnover rate, subcellular localization, post-translational modifications and interactions. Complementing these experimental developments are new data analysis, integration and visualization tools as well as data-sharing resources. Together, these advances in the multidimensional analysis of the proteome are transforming our understanding of various cellular and physiological processes.


Biochemical Journal | 2011

The serine/threonine kinase ULK1 is a target of multiple phosphorylation events

Markus Bach; Mark Larance; David E. James; Georg Ramm

Autophagy is a cellular degradation process that is up-regulated upon starvation. Nutrition-dependent regulation of mTOR (mammalian target of rapamycin) is a major determinant of autophagy. RTK (receptor tyrosine kinase) signalling and AMPK (AMP-activated protein kinase) converge upon mTOR to suppress or activate autophagy. Nutrition-dependent regulation of autophagy is mediated via mTOR phosphorylation of the serine/threonine kinase ULK1 (unc51-like kinase 1). In the present study, we also describe ULK1 as an mTOR-independent convergence point for AMPK and RTK signalling. We initially identified ULK1 as a 14-3-3-binding protein and this interaction was enhanced by treatment with AMPK agonists. AMPK interacted with ULK1 and phosphorylated ULK1 at Ser(555) in vitro. Mutation of this residue to alanine abrogated 14-3-3 binding to ULK1, and in vivo phosphorylation of ULK1 was blocked by a dominant-negative AMPK mutant. We next identified a high-stringency Akt site in ULK1 at Ser(774) and showed that phosphorylation at this site was increased by insulin. Finally, we found that the kinase-activation loop of ULK1 contains a consensus phosphorylation site at Thr(180) that is required for ULK1 autophosphorylation activity. Collectively, our results suggest that ULK1 may act as a major node for regulation by multiple kinases including AMPK and Akt that play both stimulatory and inhibitory roles in regulating autophagy.


Cell Metabolism | 2008

CaMKII-Mediated Phosphorylation of the Myosin Motor Myo1c Is Required for Insulin-Stimulated GLUT4 Translocation in Adipocytes

Ming Fai Yip; Georg Ramm; Mark Larance; Kyle L. Hoehn; Mark C. Wagner; Michael Guilhaus; David E. James

The unconventional myosin Myo1c has been implicated in insulin-regulated GLUT4 translocation to the plasma membrane in adipocytes. We show that Myo1c undergoes insulin-dependent phosphorylation at S701. Phosphorylation was accompanied by enhanced 14-3-3 binding and reduced calmodulin binding. Recombinant CaMKII phosphorylated Myo1c in vitro and siRNA knockdown of CaMKIIdelta abolished insulin-dependent Myo1c phosphorylation in vivo. CaMKII activity was increased upon insulin treatment and the CaMKII inhibitors CN21 and KN-62 or the Ca(2+) chelator BAPTA-AM blocked insulin-dependent Myo1c phosphorylation and insulin-stimulated glucose transport in adipocytes. Myo1c ATPase activity was increased after CaMKII phosphorylation in vitro and after insulin stimulation of CHO/IR/IRS-1 cells. Expression of wild-type Myo1c, but not S701A or ATPase dead mutant K111A, rescued the inhibition of GLUT4 translocation by siRNA-mediated Myo1c knockdown. These data suggest that insulin regulates Myo1c function via CaMKII-dependent phosphorylation, and these events play a role in insulin-regulated GLUT4 trafficking in adipocytes likely involving Myo1c motor activity.


Nature Methods | 2011

Stable-isotope labeling with amino acids in nematodes

Mark Larance; Aymeric P. Bailly; Ehsan Pourkarimi; Ronald T. Hay; Grant Buchanan; Sarah J. Coulthurst; Dimitris P. Xirodimas; Anton Gartner; Angus I. Lamond

We describe an approach for accurate quantitation of global protein dynamics in Caenorhabditis elegans. We adapted stable-isotope labeling with amino acids in cell culture (SILAC) for nematodes by feeding worms a heavy lysine– and heavy arginine–labeled Escherichia coli strain and report a genetic solution to elminate the problem of arginine-to-proline conversion. Combining our approach with quantitative proteomics methods, we characterized the heat-shock response in worms.


Molecular & Cellular Proteomics | 2013

Global Subcellular Characterization of Protein Degradation Using Quantitative Proteomics

Mark Larance; Yasmeen Ahmad; Kathryn J. Kirkwood; Tony Ly; Angus I. Lamond

Protein degradation provides an important regulatory mechanism used to control cell cycle progression and many other cellular pathways. To comprehensively analyze the spatial control of protein degradation in U2OS osteosarcoma cells, we have combined drug treatment and SILAC-based quantitative mass spectrometry with subcellular and protein fractionation. The resulting data set analyzed more than 74,000 peptides, corresponding to ∼5000 proteins, from nuclear, cytosolic, membrane, and cytoskeletal compartments. These data identified rapidly degraded proteasome targets, such as PRR11 and highlighted a feedback mechanism resulting in translation inhibition, induced by blocking the proteasome. We show this is mediated by activation of the unfolded protein response. We observed compartment-specific differences in protein degradation, including proteins that would not have been characterized as rapidly degraded through analysis of whole cell lysates. Bioinformatic analysis of the entire data set is presented in the Encyclopedia of Proteome Dynamics, a web-based resource, with proteins annotated for stability and subcellular distribution.


Molecular & Cellular Proteomics | 2013

Characterization of Native Protein Complexes and Protein Isoform Variation Using Size-fractionation-based Quantitative Proteomics

Kathryn J. Kirkwood; Yasmeen Ahmad; Mark Larance; Angus I. Lamond

Proteins form a diverse array of complexes that mediate cellular function and regulation. A largely unexplored feature of such protein complexes is the selective participation of specific protein isoforms and/or post-translationally modified forms. In this study, we combined native size-exclusion chromatography (SEC) with high-throughput proteomic analysis to characterize soluble protein complexes isolated from human osteosarcoma (U2OS) cells. Using this approach, we have identified over 71,500 peptides and 1,600 phosphosites, corresponding to over 8,000 proteins, distributed across 40 SEC fractions. This represents >50% of the predicted U2OS cell proteome, identified with a mean peptide sequence coverage of 27% per protein. Three biological replicates were performed, allowing statistical evaluation of the data and demonstrating a high degree of reproducibility in the SEC fractionation procedure. Specific proteins were detected interacting with multiple independent complexes, as typified by the separation of distinct complexes for the MRFAP1-MORF4L1-MRGBP interaction network. The data also revealed protein isoforms and post-translational modifications that selectively associated with distinct subsets of protein complexes. Surprisingly, there was clear enrichment for specific Gene Ontology terms associated with differential size classes of protein complexes. This study demonstrates that combined SEC/MS analysis can be used for the system-wide annotation of protein complexes and to predict potential isoform-specific interactions. All of these SEC data on the native separation of protein complexes have been integrated within the Encyclopedia of Proteome Dynamics, an online, multidimensional data-sharing resource available to the community.


The EMBO Journal | 2008

Phosphorylation‐dependent binding of 14‐3‐3 terminates signalling by the Gab2 docking protein

Tilman Brummer; Mark Larance; Maria Teresa Herrera Abreu; Ruth J. Lyons; Paul Timpson; Christoph H Emmerich; Emmy D.G. Fleuren; Gillian M. Lehrbach; Daniel Schramek; Michael Guilhaus; David E. James; Roger J. Daly

Grb2‐associated binder (Gab)2 functions downstream of a variety of receptor and cytoplasmic tyrosine kinases as a docking platform for specific signal transducers and performs important functions in both normal physiology and oncogenesis. Gab2 signalling is promoted by its association with specific receptors through the adaptor Grb2. However, the molecular mechanisms that attenuate Gab2 signals have remained unclear. We now demonstrate that growth factor‐induced phosphorylation of Gab2 on two residues, S210 and T391, leads to recruitment of 14‐3‐3 proteins. Together, these events mediate negative‐feedback regulation, as Gab2S210A/T391A exhibits sustained receptor association and signalling and promotes cell proliferation and transformation. Importantly, introduction of constitutive 14‐3‐3‐binding sites into Gab2 renders it refractory to receptor activation, demonstrating that site‐selective binding of 14‐3‐3 proteins is sufficient to terminate Gab2 signalling. Furthermore, this is associated with reduced binding of Grb2. This leads to a model where signal attenuation occurs because 14‐3‐3 promotes dissociation of Gab2 from Grb2, and thereby uncouples Gab2 from the receptor complex. This represents a novel regulatory mechanism with implications for diverse tyrosine kinase signalling systems.


Molecular & Cellular Proteomics | 2010

Global Phosphoproteomics Identifies a Major Role for AKT and 14-3-3 in Regulating EDC3

Mark Larance; Alexander F. Rowland; Kyle L. Hoehn; David T. Humphreys; Thomas Preiss; Michael Guilhaus; David E. James

Insulin plays an essential role in metabolic homeostasis in mammals, and many of the underlying biochemical pathways are regulated via the canonical phosphatidylinositol 3-kinase/AKT pathway. To identify novel metabolic actions of insulin, we conducted a quantitative proteomics analysis of insulin-regulated 14-3-3-binding proteins in muscle cells. These studies revealed a novel role for insulin in the post-transcriptional regulation of mRNA expression. EDC3, a component of the mRNA decay and translation repression pathway associated with mRNA processing bodies, was shown to be phosphorylated by AKT downstream of insulin signaling. The major insulin-regulated site was mapped to Ser-161, and phosphorylation at this site led to increased 14-3-3 binding. Functional studies indicated that induction of 14-3-3 binding to EDC3 causes morphological changes in processing body structures, inhibition of microRNA-mediated mRNA post-transcriptional regulation, and alterations in the protein- protein interactions of EDC3. These data highlight an important new arm of the insulin signaling cascade in the regulation of mRNA utilization.

Collaboration


Dive into the Mark Larance's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Guilhaus

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alper Akay

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge