Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Lathrop is active.

Publication


Featured researches published by Mark Lathrop.


Nature Genetics | 2008

Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease

Jeffrey C. Barrett; Sarah Hansoul; Dan L. Nicolae; Judy H. Cho; Richard H. Duerr; John D. Rioux; Steven R. Brant; Mark S. Silverberg; Kent D. Taylor; M. Michael Barmada; Alain Bitton; Themistocles Dassopoulos; Lisa W. Datta; Todd Green; Anne M. Griffiths; Emily O. Kistner; Miguel Regueiro; Jerome I. Rotter; L. Philip Schumm; A. Hillary Steinhart; Stephan R. Targan; Ramnik J. Xavier; Cécile Libioulle; Cynthia Sandor; Mark Lathrop; Jacques Belaiche; Olivier Dewit; Ivo Gut; Simon Heath; Debby Laukens

Several risk factors for Crohns disease have been identified in recent genome-wide association studies. To advance gene discovery further, we combined data from three studies on Crohns disease (a total of 3,230 cases and 4,829 controls) and carried out replication in 3,664 independent cases with a mixture of population-based and family-based controls. The results strongly confirm 11 previously reported loci and provide genome-wide significant evidence for 21 additional loci, including the regions containing STAT3, JAK2, ICOSLG, CDKAL1 and ITLN1. The expanded molecular understanding of the basis of this disease offers promise for informed therapeutic development.


Nature Genetics | 1994

The 1993-94 Généthon human genetic linkage map.

Gabor Gyapay; Jean Morissette; Alain Vignal; Colette Dib; Philippe Millasseau; Sophie Marc; Giorgio Bernardi; Mark Lathrop; Jean Weissenbach

In 1992, we described a second-generation genetic linkage map of the human genome. Using 1,267 new microsatellite markers, we now present a new genetic linkage map containing a total of 2,066 (AC)n short tandem repeats, 60% of which show a heterozygosity of over 0.7. Statistical linkage analysis based on the genotyping of eight large CEPH families placed these markers in the 23 linkage groups. The map includes 1,266 intervals and spans a total distance of 3690 centiMorgans (cM). A total of 1,041 markers could be ordered with odds ratios greater than 1000:1. About 56% of this map is at a distance of 1 cM or less from one of its markers.


The New England Journal of Medicine | 2010

A large-scale, consortium-based genomewide association study of asthma

Miriam F. Moffatt; Ivo Gut; Florence Demenais; David P. Strachan; Emmanuelle Bouzigon; Simon Heath; Erika von Mutius; Martin Farrall; Mark Lathrop; William Cookson

BACKGROUND Susceptibility to asthma is influenced by genes and environment; implicated genes may indicate pathways for therapeutic intervention. Genetic risk factors may be useful in identifying subtypes of asthma and determining whether intermediate phenotypes, such as elevation of the total serum IgE level, are causally linked to disease. METHODS We carried out a genomewide association study by genotyping 10,365 persons with physician-diagnosed asthma and 16,110 unaffected persons, all of whom were matched for ancestry. We used random-effects pooled analysis to test for association in the overall study population and in subgroups of subjects with childhood-onset asthma (defined as asthma developing before 16 years of age), later-onset asthma, severe asthma, and occupational asthma. RESULTS We observed associations of genomewide significance between asthma and the following single-nucleotide polymorphisms: rs3771166 on chromosome 2, implicating IL1RL1/IL18R1 (P=3×10(−9)); rs9273349 on chromosome 6, implicating HLA-DQ (P=7×10(−14)); rs1342326 on chromosome 9, flanking IL33 (P=9×10(−10)); rs744910 on chromosome 15 in SMAD3 (P=4×10(−9)); and rs2284033 on chromosome 22 in IL2RB (P=1.1×10(−8)). Association with the ORMDL3/GSDMB locus on chromosome 17q21 was specific to childhood-onset disease (rs2305480, P=6×10(−23)). Only HLA-DR showed a significant genomewide association with the total serum IgE concentration, and loci strongly associated with IgE levels were not associated with asthma. CONCLUSIONS Asthma is genetically heterogeneous. A few common alleles are associated with disease risk at all ages. Implicated genes suggest a role for communication of epithelial damage to the adaptive immune system and activation of airway inflammation. Variants at the ORMDL3/GSDMB locus are associated only with childhood-onset disease. Elevation of total serum IgE levels has a minor role in the development of asthma. (Funded by the European Commission and others.)


Nature | 2008

A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25.

Rayjean J. Hung; James D. McKay; Valerie Gaborieau; Paolo Boffetta; Mia Hashibe; David Zaridze; Anush Mukeria; Neonilia Szeszenia-Dabrowska; Jolanta Lissowska; Peter Rudnai; Eleonora Fabianova; Dana Mates; Vladimir Bencko; Lenka Foretova; Vladimir Janout; Chu Chen; Gary E. Goodman; John K. Field; Triantafillos Liloglou; George Xinarianos; Adrian Cassidy; John R. McLaughlin; Geoffrey Liu; Steven A. Narod; Hans E. Krokan; Frank Skorpen; Maiken Bratt Elvestad; Kristian Hveem; Lars J. Vatten; Jakob Linseisen

Lung cancer is the most common cause of cancer death worldwide, with over one million cases annually. To identify genetic factors that modify disease risk, we conducted a genome-wide association study by analysing 317,139 single-nucleotide polymorphisms in 1,989 lung cancer cases and 2,625 controls from six central European countries. We identified a locus in chromosome region 15q25 that was strongly associated with lung cancer (P = 9 × 10-10). This locus was replicated in five separate lung cancer studies comprising an additional 2,513 lung cancer cases and 4,752 controls (P = 5 × 10-20 overall), and it was found to account for 14% (attributable risk) of lung cancer cases. Statistically similar risks were observed irrespective of smoking status or propensity to smoke tobacco. The association region contains several genes, including three that encode nicotinic acetylcholine receptor subunits (CHRNA5, CHRNA3 and CHRNB4). Such subunits are expressed in neurons and other tissues, in particular alveolar epithelial cells, pulmonary neuroendocrine cells and lung cancer cell lines, and they bind to N′-nitrosonornicotine and potential lung carcinogens. A non-synonymous variant of CHRNA5 that induces an amino acid substitution (D398N) at a highly conserved site in the second intracellular loop of the protein is among the markers with the strongest disease associations. Our results provide compelling evidence of a locus at 15q25 predisposing to lung cancer, and reinforce interest in nicotinic acetylcholine receptors as potential disease candidates and chemopreventative targets.


JAMA | 2010

Genome-wide Analysis of Genetic Loci Associated With Alzheimer Disease

Sudha Seshadri; Annette L. Fitzpatrick; M. Arfan Ikram; Anita L. DeStefano; Vilmundur Gudnason; Mercè Boada; Joshua C. Bis; Albert V. Smith; Minerva M. Carassquillo; Jean Charles Lambert; Denise Harold; Elisabeth M.C. Schrijvers; Reposo Ramírez-Lorca; Stéphanie Debette; W. T. Longstreth; A. Cecile J. W. Janssens; V. Shane Pankratz; Jean-François Dartigues; Paul Hollingworth; Thor Aspelund; Isabel Hernández; Alexa Beiser; Lewis H. Kuller; Peter J. Koudstaal; Dennis W. Dickson; Christophe Tzourio; Richard Abraham; Carmen Antúnez; Yangchun Du; Jerome I. Rotter

CONTEXT Genome-wide association studies (GWAS) have recently identified CLU, PICALM, and CR1 as novel genes for late-onset Alzheimer disease (AD). OBJECTIVES To identify and strengthen additional loci associated with AD and confirm these in an independent sample and to examine the contribution of recently identified genes to AD risk prediction in a 3-stage analysis of new and previously published GWAS on more than 35,000 persons (8371 AD cases). DESIGN, SETTING, AND PARTICIPANTS In stage 1, we identified strong genetic associations (P < 10(-3)) in a sample of 3006 AD cases and 14,642 controls by combining new data from the population-based Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (1367 AD cases [973 incident]) with previously reported results from the Translational Genomics Research Institute and the Mayo AD GWAS. We identified 2708 single-nucleotide polymorphisms (SNPs) with P < 10(-3). In stage 2, we pooled results for these SNPs with the European AD Initiative (2032 cases and 5328 controls) to identify 38 SNPs (10 loci) with P < 10(-5). In stage 3, we combined data for these 10 loci with data from the Genetic and Environmental Risk in AD consortium (3333 cases and 6995 controls) to identify 4 SNPs with P < 1.7x10(-8). These 4 SNPs were replicated in an independent Spanish sample (1140 AD cases and 1209 controls). Genome-wide association analyses were completed in 2007-2008 and the meta-analyses and replication in 2009. MAIN OUTCOME MEASURE Presence of Alzheimer disease. RESULTS Two loci were identified to have genome-wide significance for the first time: rs744373 near BIN1 (odds ratio [OR],1.13; 95% confidence interval [CI],1.06-1.21 per copy of the minor allele; P = 1.59x10(-11)) and rs597668 near EXOC3L2/BLOC1S3/MARK4 (OR, 1.18; 95% CI, 1.07-1.29; P = 6.45x10(-9)). Associations of these 2 loci plus the previously identified loci CLU and PICALM with AD were confirmed in the Spanish sample (P < .05). However, although CLU and PICALM were confirmed to be associated with AD in this independent sample, they did not improve the ability of a model that included age, sex, and APOE to predict incident AD (improvement in area under the receiver operating characteristic curve from 0.847 to 0.849 in the Rotterdam Study and 0.702 to 0.705 in the Cardiovascular Health Study). CONCLUSIONS Two genetic loci for AD were found for the first time to reach genome-wide statistical significance. These findings were replicated in an independent population. Two recently reported associations were also confirmed. These loci did not improve AD risk prediction. While not clinically useful, they may implicate biological pathways useful for future research.


Nature | 2014

Genetics of rheumatoid arthritis contributes to biology and drug discovery

Yukinori Okada; Di Wu; Gosia Trynka; Towfique Raj; Chikashi Terao; Katsunori Ikari; Yuta Kochi; Koichiro Ohmura; Akari Suzuki; Shinji Yoshida; Robert R. Graham; Arun Manoharan; Ward Ortmann; Tushar Bhangale; Joshua C. Denny; Robert J. Carroll; Anne E. Eyler; Jeffrey D. Greenberg; Joel M. Kremer; Dimitrios A. Pappas; Lei Jiang; Jian Yin; Lingying Ye; Ding Feng Su; Jian Yang; Gang Xie; E. Keystone; Harm-Jan Westra; Tonu Esko; Andres Metspalu

A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA). Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ∼10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2, 3, 4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation, cis-acting expression quantitative trait loci and pathway analyses—as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes—to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.


Nature Reviews Genetics | 2009

Mapping complex disease traits with global gene expression

William Cookson; Liming Liang; Gonçalo R. Abecasis; Miriam F. Moffatt; Mark Lathrop

Variation in gene expression is an important mechanism underlying susceptibility to complex disease. The simultaneous genome-wide assay of gene expression and genetic variation allows the mapping of the genetic factors that underpin individual differences in quantitative levels of expression (expression QTLs; eQTLs). The availability of systematically generated eQTL information could provide immediate insight into a biological basis for disease associations identified through genome-wide association (GWA) studies, and can help to identify networks of genes involved in disease pathogenesis. Although there are limitations to current eQTL maps, understanding of disease will be enhanced with novel technologies and international efforts that extend to a wide range of new samples and tissues.


Nature Genetics | 2009

Genome-wide association study identifies five susceptibility loci for glioma.

Sanjay Shete; Fay J. Hosking; Lindsay B. Robertson; Sara E. Dobbins; Marc Sanson; Beatrice Malmer; Matthias Simon; Yannick Marie; Blandine Boisselier; Jean Yves Delattre; Khê Hoang-Xuan; Soufiane El Hallani; Ahmed Idbaih; Diana Zelenika; Ulrika Andersson; Roger Henriksson; A. Tommy Bergenheim; Maria Feychting; Stefan Lönn; Anders Ahlbom; Johannes Schramm; Michael Linnebank; Kari Hemminki; Rajiv Kumar; Sarah J. Hepworth; Amy Price; Georgina Armstrong; Yanhong Liu; Xiangjun Gu; Robert Yu

To identify risk variants for glioma, we conducted a meta-analysis of two genome-wide association studies by genotyping 550K tagging SNPs in a total of 1,878 cases and 3,670 controls, with validation in three additional independent series totaling 2,545 cases and 2,953 controls. We identified five risk loci for glioma at 5p15.33 (rs2736100, TERT; P = 1.50 × 10−17), 8q24.21 (rs4295627, CCDC26; P = 2.34 × 10−18), 9p21.3 (rs4977756, CDKN2A-CDKN2B; P = 7.24 × 10−15), 20q13.33 (rs6010620, RTEL1; P = 2.52 × 10−12) and 11q23.3 (rs498872, PHLDB1; P = 1.07 × 10−8). These data show that common low-penetrance susceptibility alleles contribute to the risk of developing glioma and provide insight into disease causation of this primary brain tumor.


PLOS Genetics | 2007

Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4

Cécile Libioulle; Edouard Louis; Sarah Hansoul; Cynthia Sandor; Frédéric Farnir; Denis Franchimont; Severine Vermeire; Olivier Dewit; Martine De Vos; Anna L. Dixon; Bruno Demarche; Ivo Gut; Simon Heath; Mario Foglio; Liming Liang; Debby Laukens; Myriam Mni; Diana Zelenika; André Van Gossum; Paul Rutgeerts; Jacques Belaiche; Mark Lathrop; Michel Georges

To identify novel susceptibility loci for Crohn disease (CD), we undertook a genome-wide association study with more than 300,000 SNPs characterized in 547 patients and 928 controls. We found three chromosome regions that provided evidence of disease association with p-values between 10−6 and 10−9. Two of these (IL23R on Chromosome 1 and CARD15 on Chromosome 16) correspond to genes previously reported to be associated with CD. In addition, a 250-kb region of Chromosome 5p13.1 was found to contain multiple markers with strongly suggestive evidence of disease association (including four markers with p < 10−7). We replicated the results for 5p13.1 by studying 1,266 additional CD patients, 559 additional controls, and 428 trios. Significant evidence of association (p < 4 × 10−4) was found in case/control comparisons with the replication data, while associated alleles were over-transmitted to affected offspring (p < 0.05), thus confirming that the 5p13.1 locus contributes to CD susceptibility. The CD-associated 250-kb region was saturated with 111 SNP markers. Haplotype analysis supports a complex locus architecture with multiple variants contributing to disease susceptibility. The novel 5p13.1 CD locus is contained within a 1.25-Mb gene desert. We present evidence that disease-associated alleles correlate with quantitative expression levels of the prostaglandin receptor EP4, PTGER4, the gene that resides closest to the associated region. Our results identify a major new susceptibility locus for CD, and suggest that genetic variants associated with disease risk at this locus could modulate cis-acting regulatory elements of PTGER4.


Nature Genetics | 2008

Lung cancer susceptibility locus at 5p15.33

James D. McKay; Rayjean J. Hung; Valerie Gaborieau; Paolo Boffetta; Amelie Chabrier; Graham Byrnes; David Zaridze; Anush Mukeria; Neonilia Szeszenia-Dabrowska; Jolanta Lissowska; Peter Rudnai; Eleonora Fabianova; Dana Mates; Vladimir Bencko; Lenka Foretova; Vladimir Janout; John R. McLaughlin; Frances A. Shepherd; Alexandre Montpetit; Steven A. Narod; Hans E. Krokan; Frank Skorpen; Maiken Bratt Elvestad; Lars J. Vatten; Inger Njølstad; Tomas Axelsson; Chu Chen; Gary E. Goodman; Matt J. Barnett; Melissa M. Loomis

We carried out a genome-wide association study of lung cancer (3,259 cases and 4,159 controls), followed by replication in 2,899 cases and 5,573 controls. Two uncorrelated disease markers at 5p15.33, rs402710 and rs2736100 were detected by the genome-wide data (P = 2 × 10−7 and P = 4 × 10−6) and replicated by the independent study series (P = 7 × 10−5 and P = 0.016). The susceptibility region contains two genes, TERT and CLPTM1L, suggesting that one or both may have a role in lung cancer etiology.

Collaboration


Dive into the Mark Lathrop's collaboration.

Top Co-Authors

Avatar

Simon Heath

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivo Gut

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge