Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Leo Michaels is active.

Publication


Featured researches published by Mark Leo Michaels.


FEBS Letters | 2009

FGF21 N- and C-termini play different roles in receptor interaction and activation.

Junming Yie; Randy Ira Hecht; Jennifer Patel; Jennitte Stevens; Wei Wang; Nessa Hawkins; Shirley Steavenson; Steve Smith; Dwight Winters; Seth Fisher; Ling Cai; Ed Belouski; Ching Chen; Mark Leo Michaels; Yue-Sheng Li; Richard Lindberg; Minghan Wang; Murielle M. Véniant; Jing Xu

MINT‐6799907, MINT‐6799922: FGF21 (uniprotkb: Q9NSA1) binds (MI:0407) to β‐Klotho (uniprotkb: Q86Z14) by surface plasmon resonance (MI:0107)


Molecular Cancer Therapeutics | 2010

Context-Dependent Role of Angiopoietin-1 Inhibition in the Suppression of Angiogenesis and Tumor Growth: Implications for AMG 386, an Angiopoietin-1/2–Neutralizing Peptibody

Angela Coxon; James Bready; Hosung Min; Stephen Kaufman; Juan Leal; Dongyin Yu; Tani Ann Lee; Ji-Rong Sun; Juan Estrada; Brad Bolon; James McCabe; Ling Wang; Karen Rex; Sean Caenepeel; Paul E. Hughes; David Cordover; Haejin Kim; Seog Joon Han; Mark Leo Michaels; Eric Hsu; Grant Shimamoto; Russell C. Cattley; Eunju Hurh; Linh T. Nguyen; Shao Xiong Wang; Anthony Ndifor; Isaac J. Hayward; Beverly L. Falcon; Donald M. McDonald; Luke Li

AMG 386 is an investigational first-in-class peptide-Fc fusion protein (peptibody) that inhibits angiogenesis by preventing the interaction of angiopoietin-1 (Ang1) and Ang2 with their receptor, Tie2. Although the therapeutic value of blocking Ang2 has been shown in several models of tumorigenesis and angiogenesis, the potential benefit of Ang1 antagonism is less clear. To investigate the consequences of Ang1 neutralization, we have developed potent and selective peptibodies that inhibit the interaction between Ang1 and its receptor, Tie2. Although selective Ang1 antagonism has no independent effect in models of angiogenesis-associated diseases (cancer and diabetic retinopathy), it induces ovarian atrophy in normal juvenile rats and inhibits ovarian follicular angiogenesis in a hormone-induced ovulation model. Surprisingly, the activity of Ang1 inhibitors seems to be unmasked in some disease models when combined with Ang2 inhibitors, even in the context of concurrent vascular endothelial growth factor inhibition. Dual inhibition of Ang1 and Ang2 using AMG 386 or a combination of Ang1- and Ang2-selective peptibodies cooperatively suppresses tumor xenograft growth and ovarian follicular angiogenesis; however, Ang1 inhibition fails to augment the suppressive effect of Ang2 inhibition on tumor endothelial cell proliferation, corneal angiogenesis, and oxygen-induced retinal angiogenesis. In no case was Ang1 inhibition shown to (a) confer superior activity to Ang2 inhibition or dual Ang1/2 inhibition or (b) antagonize the efficacy of Ang2 inhibition. These results imply that Ang1 plays a context-dependent role in promoting postnatal angiogenesis and that dual Ang1/2 inhibition is superior to selective Ang2 inhibition for suppression of angiogenesis in some postnatal settings. Mol Cancer Ther; 9(10); 2641–51. ©2010 AACR.


PLOS ONE | 2012

Rationale-Based Engineering of a Potent Long-Acting FGF21 Analog for the Treatment of Type 2 Diabetes.

Randy Ira Hecht; Yue-Sheng Li; Jeonghoon Sun; Ed Belouski; Michael J Hall; Todd Hager; Junming Yie; Wei Wang; Dwight Winters; Stephen Smith; Chris Spahr; Lei-Ting Tony Tam; Zhongnan Shen; Shanaka Stanislaus; Narumol Chinookoswong; Yvonne Yen Lin Lau; Allen Sickmier; Mark Leo Michaels; Thomas C. Boone; Murielle M. Véniant; Jing Xu

Fibroblast growth factor 21 (FGF21) is a promising drug candidate for the treatment of type 2 diabetes. However, the use of wild type native FGF21 is challenging due to several limitations. Among these are its short half-life, its susceptibility to in vivo proteolytic degradation and its propensity to in vitro aggregation. We here describe a rationale-based protein engineering approach to generate a potent long-acting FGF21 analog with improved resistance to proteolysis and aggregation. A recombinant Fc-FGF21 fusion protein was constructed by fusing the Fc domain of human IgG1 to the N-terminus of human mature FGF21 via a linker peptide. The Fc positioned at the N-terminus was determined to be superior to the C-terminus as the N-terminal Fc fusion retained the βKlotho binding affinity and the in vitro and in vivo potency similar to native FGF21. Two specific point mutations were introduced into FGF21. The leucine to arginine substitution at position 98 (L98R) suppressed FGF21 aggregation at high concentrations and elevated temperatures. The proline to glycine replacement at position 171 (P171G) eliminated a site-specific proteolytic cleavage of FGF21 identified in mice and cynomolgus monkeys. The derived Fc-FGF21(RG) molecule demonstrated a significantly improved circulating half-life while maintaining the in vitro activity similar to that of wild type protein. The half-life of Fc-FGF21(RG) was 11 h in mice and 30 h in monkeys as compared to 1-2 h for native FGF21 or Fc-FGF21 wild type. A single administration of Fc-FGF21(RG) in diabetic mice resulted in a sustained reduction in blood glucose levels and body weight gains up to 5-7 days, whereas the efficacy of FGF21 or Fc-FGF21 lasted only for 1 day. In summary, we engineered a potent and efficacious long-acting FGF21 analog with a favorable pharmaceutical property for potential clinical development.


Journal of Pharmacology and Experimental Therapeutics | 2015

Anti-PCSK9 Antibody Pharmacokinetics and Low-Density Lipoprotein-Cholesterol Pharmacodynamics in Nonhuman Primates Are Antigen Affinity–Dependent and Exhibit Limited Sensitivity to Neonatal Fc Receptor–Binding Enhancement

Kirk Henne; Brandon Ason; Monique Howard; Wei Wang; Jeonghoon Sun; Jared Higbee; Jie Tang; Katherine Matsuda; Ren Xu; Lei Zhou; Joyce Chi Yee Chan; Chadwick Terence King; Derek E. Piper; Randal R. Ketchem; Mark Leo Michaels; Simon Jackson; Marc W. Retter

Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as an attractive therapeutic target for cardiovascular disease. Monoclonal antibodies (mAbs) that bind PCSK9 and prevent PCSK9:low-density lipoprotein receptor complex formation reduce serum low-density lipoprotein-cholesterol (LDL-C) in vivo. PCSK9-mediated lysosomal degradation of bound mAb, however, dramatically reduces mAb exposure and limits duration of effect. Administration of high-affinity mAb1:PCSK9 complex (1:2) to mice resulted in significantly lower mAb1 exposure compared with mAb1 dosed alone in normal mice or in PCSK9 knockout mice lacking antigen. To identify mAb-binding characteristics that minimize lysosomal disposition, the pharmacokinetic behavior of four mAbs representing a diverse range of PCSK9-binding affinities at neutral (serum) and acidic (endosomal) pH was evaluated in cynomolgus monkeys. Results revealed an inverse correlation between affinity and both mAb exposure and duration of LDL-C lowering. High-affinity mAb1 exhibited the lowest exposure and shortest duration of action (6 days), whereas mAb2 displayed prolonged exposure and LDL-C reduction (51 days) as a consequence of lower affinity and pH-sensitive PCSK9 binding. mAbs with shorter endosomal PCSK9:mAb complex dissociation half-lives (<20 seconds) produced optimal exposure-response profiles. Interestingly, incorporation of previously reported Fc-region amino acid substitutions or novel loop-insertion peptides that enhance in vitro neonatal Fc receptor binding, led to only modest pharmacokinetic improvements for mAbs with pH-dependent PCSK9 binding, with only limited augmentation of pharmacodynamic activity relative to native mAbs. A pivotal role for PCSK9 in mAb clearance was demonstrated, more broadly suggesting that therapeutic mAb-binding characteristics require optimization based on target pharmacology.


Biotechnology and Bioengineering | 2012

Targeted codon optimization improves translational fidelity for an Fc fusion protein

Katariina M. Hutterer; Zhongqi Zhang; Mark Leo Michaels; Ed Belouski; Robert W. Hong; Bhavana Shah; Mark Berge; Hedieh Barkhordarian; Eleanor Le; Steve Smith; Dwight Winters; Frank Abroson; Randy Ira Hecht; Jennifer Liu

High levels of translational errors, both truncation and misincorporation in an Fc‐fusion protein were observed. Here, we demonstrate the impact of several commercially available codon optimization services, and compare to a targeted strategy. Using the targeted strategy, only codons known to have translational errors are modified. For an Fc‐fusion protein expressed in Escherichia coli, the targeted strategy, in combination with appropriate fermentation conditions, virtually eliminated misincorporation (proteins produced with a wrong amino acid sequence), and reduced the level of truncation. The use of full optimization using commercially available strategies reduced the initial errors, but introduced different misincorporations. However, truncation was higher using the targeted strategy than for most of the full optimization strategies. This targeted approach, along with monitoring of translation fidelity and careful attention to fermentation conditions is key to minimizing translational error and ensuring high‐quality expression. These findings should be useful for other biopharmaceutical products, as well as any other transgenic constructs where protein quality is important. Biotechnol. Bioeng. 2012; 109: 2770–2777.


Archive | 2018

Novel Constructs—Half-Life Extensions

Jeonghoon Sun; Mark Leo Michaels

A dearth of biologics have been developed and used as therapeutics for numerous disease indications, including IgG monoclonal antibodies, non-IgG recombinant proteins, bi- and multi-specific antibodies, and antibody drug conjugates. A remarkable portion of these biologic constructs exhibits a short plasma half-life that results in a significant reduction in therapeutic efficacy. Frequently, biologic drugs need to be designed to maintain the effective concentration range during the therapeutic window with an extended serum half-life. Provided here is a comprehensive overview of various half-life extension methods involving FcRn engagement, chemical and genetic fusion, post-translational modifications and formulation.


Journal of Biological Chemistry | 2018

A biparatopic agonistic antibody that mimics fibroblast growth factor 21 ligand activity

Sally Yu Shi; Ya-Wen Lu; Zhi Liu; Jennitte Stevens; Christopher M. Murawsky; Vicki Wilson; Zhonghua Hu; William G. Richards; Mark Leo Michaels; Jun Zhang; Wei Yan; Yang Li

Bispecific antibodies have become important formats for therapeutic discovery. They allow for potential synergy by simultaneously engaging two separate targets and enable new functions that are not possible to achieve by using a combination of two monospecific antibodies. Antagonistic antibodies dominate drug discovery today, but only a limited number of agonistic antibodies (i.e. those that activate receptor signaling) have been described. For receptors formed by two components, engaging both of these components simultaneously may be required for agonistic signaling. As such, bispecific antibodies may be particularly useful in activating multicomponent receptor complexes. Here, we describe a biparatopic (i.e. targeting two different epitopes on the same target) format that can activate the endocrine fibroblast growth factor (FGF) 21 receptor (FGFR) complex containing β-Klotho and FGFR1c. This format was constructed by grafting two different antigen-specific VH domains onto the VH and VL positions of an IgG, yielding a tetravalent binder with two potential geometries, a close and a distant, between the two paratopes. Our results revealed that the biparatopic molecule provides activities that are not observed with each paratope alone. Our approach could help address the challenges with heterogeneity inherent in other bispecific formats and could provide the means to adjust intramolecular distances of the antibody domains to drive optimal activity in a bispecific format. In conclusion, this format is versatile, is easy to construct and produce, and opens a new avenue for agonistic antibody discovery and development.


Cancer Cell | 2004

Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2

Jonathan D. Oliner; Hosung Min; Juan Leal; Dongyin Yu; Shashirekha Rao; Edward You; Xiu Tang; Haejin Kim; Susanne Meyer; Seog Joon Han; Nessa Hawkins; Robert Rosenfeld; Elyse Davy; Kevin Graham; Frederick W. Jacobsen; Shirley Stevenson; Joanne Ho; Qing Chen; Thomas Hartmann; Mark Leo Michaels; Michael Kelley; Luke Li; Karen C. Sitney; Frank Martin; Ji-Rong Sun; Nancy Zhang; John Lu; Juan Estrada; Rakesh Kumar; Angela Coxon


Archive | 2010

FGF21 mutants and uses thereof

Edward John Belouski; Murielle Marie Ellison; Agnes Eva Hamburger; Randy Ira Hecht; Yue-Sheng Li; Mark Leo Michaels; Jeonghoon Sun; Jing Xu


Journal of the American Chemical Society | 1996

SPECIFIC RECOGNITION OF SUBSTRATE ANALOGS BY THE DNA MISMATCH REPAIR ENZYME MUTY

Silvia L. Porello; Scott D. Williams; Heiko Kuhn; Mark Leo Michaels; Sheila S. David

Collaboration


Dive into the Mark Leo Michaels's collaboration.

Researchain Logo
Decentralizing Knowledge