Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Levendorf is active.

Publication


Featured researches published by Mark Levendorf.


Nature | 2011

Grains and grain boundaries in single-layer graphene atomic patchwork quilts

Pinshane Y. Huang; Carlos Ruiz-Vargas; Arend van der Zande; William S. Whitney; Mark Levendorf; Joshua W. Kevek; Shivank Garg; Jonathan S. Alden; Caleb J. Hustedt; Ye Zhu; Jiwoong Park; Paul L. McEuen; David A. Muller

The properties of polycrystalline materials are often dominated by the size of their grains and by the atomic structure of their grain boundaries. These effects should be especially pronounced in two-dimensional materials, where even a line defect can divide and disrupt a crystal. These issues take on practical significance in graphene, which is a hexagonal, two-dimensional crystal of carbon atoms. Single-atom-thick graphene sheets can now be produced by chemical vapour deposition on scales of up to metres, making their polycrystallinity almost unavoidable. Theoretically, graphene grain boundaries are predicted to have distinct electronic, magnetic, chemical and mechanical properties that strongly depend on their atomic arrangement. Yet because of the five-order-of-magnitude size difference between grains and the atoms at grain boundaries, few experiments have fully explored the graphene grain structure. Here we use a combination of old and new transmission electron microscopy techniques to bridge these length scales. Using atomic-resolution imaging, we determine the location and identity of every atom at a grain boundary and find that different grains stitch together predominantly through pentagon–heptagon pairs. Rather than individually imaging the several billion atoms in each grain, we use diffraction-filtered imaging to rapidly map the location, orientation and shape of several hundred grains and boundaries, where only a handful have been previously reported. The resulting images reveal an unexpectedly small and intricate patchwork of grains connected by tilt boundaries. By correlating grain imaging with scanning probe and transport measurements, we show that these grain boundaries severely weaken the mechanical strength of graphene membranes but do not as drastically alter their electrical properties. These techniques open a new window for studies on the structure, properties and control of grains and grain boundaries in graphene and other two-dimensional materials.


ACS Nano | 2011

Oxidation resistance of graphene-coated Cu and Cu/Ni alloy.

Shanshan Chen; Lola Brown; Mark Levendorf; Weiwei Cai; Sang Yong Ju; Jonathan Edgeworth; Xuesong Li; Carl W. Magnuson; Aruna Velamakanni; Richard D. Piner; Junyong Kang; Jiwoong Park; Rodney S. Ruoff

The ability to protect refined metals from reactive environments is vital to many industrial and academic applications. Current solutions, however, typically introduce several negative effects, including increased thickness and changes in the metal physical properties. In this paper, we demonstrate for the first time the ability of graphene films grown by chemical vapor deposition to protect the surface of the metallic growth substrates of Cu and Cu/Ni alloy from air oxidation. In particular, graphene prevents the formation of any oxide on the protected metal surfaces, thus allowing pure metal surfaces only one atom away from reactive environments. SEM, Raman spectroscopy, and XPS studies show that the metal surface is well protected from oxidation even after heating at 200 °C in air for up to 4 h. Our work further shows that graphene provides effective resistance against hydrogen peroxide. This protection method offers significant advantages and can be used on any metal that catalyzes graphene growth.


Science | 2011

Oriented 2D Covalent Organic Framework Thin Films on Single-Layer Graphene

John W. Colson; Arthur R. Woll; Arnab Mukherjee; Mark Levendorf; Eric L. Spitler; Virgil B. Shields; Michael G. Spencer; Jiwoong Park; William R. Dichtel

Microporous covalent organic frameworks, which usually form as insoluble powders, grow as crystalline films on graphene. Covalent organic frameworks (COFs), in which molecular building blocks form robust microporous networks, are usually synthesized as insoluble and unprocessable powders. We have grown two-dimensional (2D) COF films on single-layer graphene (SLG) under operationally simple solvothermal conditions. The layered films stack normal to the SLG surface and show improved crystallinity compared with COF powders. We used SLG surfaces supported on copper, silicon carbide, and transparent fused silica (SiO2) substrates, enabling optical spectroscopy of COFs in transmission mode. Three chemically distinct COF films grown on SLG exhibit similar vertical alignment and long-range order, and two of these are of interest for organic electronic devices for which thin-film formation is a prerequisite for characterizing their optoelectronic properties.


Nature | 2012

Graphene and boron nitride lateral heterostructures for atomically thin circuitry

Mark Levendorf; Cheol-Joo Kim; Lola Brown; Pinshane Y. Huang; Robin W. Havener; David A. Muller; Jiwoong Park

Precise spatial control over the electrical properties of thin films is the key capability enabling the production of modern integrated circuitry. Although recent advances in chemical vapour deposition methods have enabled the large-scale production of both intrinsic and doped graphene, as well as hexagonal boron nitride (h-BN), controlled fabrication of lateral heterostructures in these truly atomically thin systems has not been achieved. Graphene/h-BN interfaces are of particular interest, because it is known that areas of different atomic compositions may coexist within continuous atomically thin films and that, with proper control, the bandgap and magnetic properties can be precisely engineered. However, previously reported approaches for controlling these interfaces have fundamental limitations and cannot be easily integrated with conventional lithography. Here we report a versatile and scalable process, which we call ‘patterned regrowth’, that allows for the spatially controlled synthesis of lateral junctions between electrically conductive graphene and insulating h-BN, as well as between intrinsic and substitutionally doped graphene. We demonstrate that the resulting films form mechanically continuous sheets across these heterojunctions. Conductance measurements confirm laterally insulating behaviour for h-BN regions, while the electrical behaviour of both doped and undoped graphene sheets maintain excellent properties, with low sheet resistances and high carrier mobilities. Our results represent an important step towards developing atomically thin integrated circuitry and enable the fabrication of electrically isolated active and passive elements embedded in continuous, one-atom-thick sheets, which could be manipulated and stacked to form complex devices at the ultimate thickness limit.


Science | 2012

Tailoring Electrical Transport Across Grain Boundaries in Polycrystalline Graphene

Adam W. Tsen; Lola Brown; Mark Levendorf; Fereshte Ghahari; Pinshane Y. Huang; Robin W. Havener; Carlos Ruiz-Vargas; David A. Muller; Philip Kim; Jiwoong Park

Going Up Against the Grain Boundaries Exfoliated graphene sheets are single crystals that exhibit excellent electronic properties, but their fabrication is too slow for large-scale device fabrication. Growth methods such as chemical vapor deposition are faster, but create polycrystalline graphene sheets that contain grain boundaries that can scatter charge carriers and decrease performance. Tsen et al. (p. 1143) found that the presence of overlapping domains within polycrystalline graphene samples could increase conductivity of samples by an order of magnitude, allowing them to rival exfoliated samples. Overlap between crystallites in vapor-grown graphene improves electronic conductivity. Graphene produced by chemical vapor deposition (CVD) is polycrystalline, and scattering of charge carriers at grain boundaries (GBs) could degrade its performance relative to exfoliated, single-crystal graphene. However, the electrical properties of GBs have so far been addressed indirectly without simultaneous knowledge of their locations and structures. We present electrical measurements on individual GBs in CVD graphene first imaged by transmission electron microscopy. Unexpectedly, the electrical conductance improves by one order of magnitude for GBs with better interdomain connectivity. Our study suggests that polycrystalline graphene with good stitching may allow for uniformly high electrical performance rivaling that of exfoliated samples, which we demonstrate using optimized growth conditions and device geometry.


Nano Letters | 2009

Transfer-Free Batch Fabrication of Single Layer Graphene Transistors

Mark Levendorf; Carlos Ruiz-Vargas; Shivank Garg; Jiwoong Park

Full integration of graphene into conventional device circuitry would require a reproducible large scale graphene synthesis that is compatible with conventional thin film technology. We report the synthesis of large scale single layer graphene directly onto an evaporated copper film. A novel fabrication method was used to directly pattern these graphene sheets into devices by simply removing the underlying copper film. Raman and conductance measurements show that the mechanical and electrical properties of our single layer graphene are uniform over a large area, ( Ferrari, A. C. et al. Phys. Rev. Lett. 2006, 97, 187401.) which leads to a high device yield and successful fabrication of ultra long (>0.5 mm) graphene channels. Our graphene based devices present excellent electrical properties including a promising carrier mobility of 700 cm(2)/V.s and current saturation characteristics similar to devices based on exfoliated graphene ( Meric, I.. et al. Nat Nanotechnol. 2008, 3, 654-659).


Nano Letters | 2013

Local Atomic and Electronic Structure of Boron Chemical Doping in Monolayer Graphene

Liuyan Zhao; Mark Levendorf; Scott Goncher; Theanne Schiros; Lucia Palova; Amir Zabet-Khosousi; Kwang Taeg Rim; Christopher Gutierrez; Dennis Nordlund; Cherno Jaye; Mark S. Hybertsen; David R. Reichman; George W. Flynn; Jiwoong Park; Abhay Pasupathy

We use scanning tunneling microscopy and X-ray spectroscopy to characterize the atomic and electronic structure of boron-doped and nitrogen-doped graphene created by chemical vapor deposition on copper substrates. Microscopic measurements show that boron, like nitrogen, incorporates into the carbon lattice primarily in the graphitic form and contributes ~0.5 carriers into the graphene sheet per dopant. Density functional theory calculations indicate that boron dopants interact strongly with the underlying copper substrate while nitrogen dopants do not. The local bonding differences between graphitic boron and nitrogen dopants lead to large scale differences in dopant distribution. The distribution of dopants is observed to be completely random in the case of boron, while nitrogen displays strong sublattice clustering. Structurally, nitrogen-doped graphene is relatively defect-free while boron-doped graphene films show a large number of Stone-Wales defects. These defects create local electronic resonances and cause electronic scattering, but do not electronically dope the graphene film.


Nano Letters | 2014

Polycrystalline Graphene with Single Crystalline Electronic Structure

Lola Brown; Edward Lochocki; José Avila; Cheol-Joo Kim; Yui Ogawa; Robin W. Havener; Dong-Ki Kim; Eric Monkman; Daniel Shai; Haofei I. Wei; Mark Levendorf; Maria C. Asensio; Kyle Shen; Jiwoong Park

We report the scalable growth of aligned graphene and hexagonal boron nitride on commercial copper foils, where each film originates from multiple nucleations yet exhibits a single orientation. Thorough characterization of our graphene reveals uniform crystallographic and electronic structures on length scales ranging from nanometers to tens of centimeters. As we demonstrate with artificial twisted graphene bilayers, these inexpensive and versatile films are ideal building blocks for large-scale layered heterostructures with angle-tunable optoelectronic properties.


Nano Letters | 2009

Measurements of the Carrier Dynamics and Terahertz Response of Oriented Germanium Nanowires using Optical-Pump Terahertz-Probe Spectroscopy

Jared H. Strait; Paul A. George; Mark Levendorf; Martin Blood-Forsythe; Farhan Rana; Jiwoong Park

We have measured the terahertz response of oriented Germanium nanowires using ultrafast optical-pump terahertz-probe spectroscopy. We present results on the time, frequency, and polarization dependence of the terahertz response. Our results indicate intraband energy relaxation times of photoexcited carriers in the 1.5-2.0 ps range, carrier density dependent interband electron-hole recombination times in the 75-125 ps range, and carrier momentum scattering rates in the 60-90 fs range. Additionally, the terahertz response of the nanowires is strongly polarization dependent despite the subwavelength dimensions of the nanowires. The differential terahertz transmission is found to be large when the field is polarized parallel to the nanowires and very small when the field is polarized perpendicular to the nanowires. This polarization dependence of the terahertz response can be explained in terms of the induced depolarization fields and the resulting magnitudes of the surface plasmon frequencies.


Microscopy and Microanalysis | 2011

Imaging Grains and Grain Boundaries in Single-Layer Graphene: An Atomic Patchwork Quilt

Pinshane Y. Huang; A. M. Van Der Zande; Carlos Ruiz-Vargas; William S. Whitney; Mark Levendorf; Joshua W. Kevek; Ye Zhu; Jiwoong Park; Paul L. McEuen; David A. Muller

1. School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA 2. Department of Physics, Cornell University, Ithaca, NY 14853, USA 3. Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA 4. Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602, USA 5. Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY14853, USA * These authors contributed equally to this work.

Collaboration


Dive into the Mark Levendorf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheol-Joo Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge