Mark Linch
The Royal Marsden NHS Foundation Trust
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark Linch.
Nature Reviews Molecular Cell Biology | 2010
Carine Rossé; Mark Linch; Stéphanie Kermorgant; Angus J.M. Cameron; Katrina Boeckeler; Peter J. Parker
Networks of signal transducers determine the conversion of environmental cues into cellular actions. Among the main players in these networks are protein kinases, which can acutely and reversibly modify protein functions to influence cellular events. One group of kinases, the protein kinase C (PKC) family, have been increasingly implicated in the organization of signal propagation, particularly in the spatial distribution of signals. Examples of where and how various PKC isoforms direct this tier of signal organization are becoming more evident.
Current Opinion in Cell Biology | 2009
Jon Roffey; Carine Rossé; Mark Linch; Andrew Hibbert; Neil Q. McDonald; Peter J. Parker
Intervention in protein kinase C (PKC) has a chequered history, partly because of the poor selectivity of many inhibitors and partly a reflection of the sometimes antagonistic action of related PKC isoforms. Recent advances in targeting PKC isoforms have come from structural work on isolated kinase domains that have provided opportunities to drive selectivity through structure-based avenues. The promise of isoform selective inhibitors and the rationale for their development are discussed in the broader context of the PKC inhibitor arsenal.
Nature Reviews Clinical Oncology | 2014
Mark Linch; Aisha Miah; Khin Thway; Ian Judson; Charlotte Benson
Soft-tissue sarcoma (STS) is a rare and heterogeneous group of tumours that comprise approximately 1% of all adult cancers, and encompass over 50 different subtypes. These tumours exhibit a wide range of differing behaviours and underlying molecular pathologies, and can arise anywhere in the body. Surgical resection is critical to the management of locoregional disease. In the locally advanced or metastatic disease settings, systemic therapy has an important role in the multidisciplinary management of sarcoma. Cytotoxic therapy that usually consists of doxorubicin and ifosfamide has been the mainstay of treatment for many years. However recent advances in molecular pathogenesis, the development of novel targeted therapies, changes in clinical trial design and increased international collaboration have led to the development of histology-driven therapy. Furthermore, genomic profiling has highlighted that some STS are driven by translocation, mutation or amplification and others have more complex and chaotic karyotypes. In this Review, we aim to describe the current gold standard treatment for specific STS subtypes as well as outline future promising therapies in the pipeline.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Carine Rossé; Catalina Lodillinsky; Laetitia Fuhrmann; Maya Nourieh; Pedro Monteiro; Marie Irondelle; Emilie Lagoutte; Sophie Vacher; François Waharte; Perrine Paul-Gilloteaux; Maryse Romao; Lucie Sengmanivong; Mark Linch; Johan Van Lint; Graça Raposo; Anne Vincent-Salomon; Ivan Bièche; Peter J. Parker; Philippe Chavrier
Significance We characterize a mechanism through which the polarity protein atypical PKCι controls invasion and matrix remodeling by tumor cells by regulating endosome-to-plasma membrane traffic of the membrane type 1-matrix metalloproteinase (MT1-MMP) in breast-cancer cells. Further analysis shows that atypical PKCι and MT1-MMP are co–up-regulated in hormone receptor-negative breast tumors in association with higher risk of metastasis. These findings provide previously unidentified avenues for the design of therapeutic interventions. Dissemination of carcinoma cells requires the pericellular degradation of the extracellular matrix, which is mediated by membrane type 1-matrix metalloproteinase (MT1-MMP). In this article, we report a co–up-regulation and colocalization of MT1-MMP and atypical protein kinase C iota (aPKCι) in hormone receptor-negative breast tumors in association with a higher risk of metastasis. Silencing of aPKC in invasive breast-tumor cell lines impaired the delivery of MT1-MMP from late endocytic storage compartments to the surface and inhibited matrix degradation and invasion. We provide evidence that aPKCι, in association with MT1-MMP–containing endosomes, phosphorylates cortactin, which is present in F-actin–rich puncta on MT1-MMP–positive endosomes and regulates cortactin association with the membrane scission protein dynamin-2. Thus, cell line-based observations and clinical data reveal the concerted activity of aPKC, cortactin, and dynamin-2, which control the trafficking of MT1-MMP from late endosome to the plasma membrane and play an important role in the invasive potential of breast-cancer cells.
Biochemical Pharmacology | 2014
Peter J. Parker; Verline Justilien; Philippe Riou; Mark Linch; Alan P. Fields
Protein kinase inhibitors represent a major class of targeted therapeutics that has made a positive impact on treatment of cancer and other disease indications. Among the promising kinase targets for further therapeutic development are members of the Protein Kinase C (PKC) family. The PKCs are central components of many signaling pathways that regulate diverse cellular functions including proliferation, cell cycle, differentiation, survival, cell migration, and polarity. Genetic manipulation of individual PKC isozymes has demonstrated that they often fulfill distinct, nonredundant cellular functions. Participation of PKC members in different intracellular signaling pathways reflects responses to varying extracellular stimuli, intracellular localization, tissue distribution, phosphorylation status, and intermolecular interactions. PKC activity, localization, phosphorylation, and/or expression are often altered in human tumors, and PKC isozymes have been implicated in various aspects of transformation, including uncontrolled proliferation, migration, invasion, metastasis, angiogenesis, and resistance to apoptosis. Despite the strong relationship between PKC isozymes and cancer, to date only atypical PKCiota has been shown to function as a bona fide oncogene, and as such is a particularly attractive therapeutic target for cancer treatment. In this review, we discuss the role of PKCiota in transformation and describe mechanism-based approaches to therapeutically target oncogenic PKCiota signaling in cancer.
Biochemical Journal | 2011
Angus J.M. Cameron; Mark Linch; Adrian T. Saurin; Cristina Escribano; Peter J. Parker
The protein kinase TOR (target of rapamycin) is a key regulator of cell growth and metabolism with significant clinical relevance. In mammals, TOR signals through two distinct multi-protein complexes, mTORC1 and mTORC2 (mammalian TOR complex 1 and 2 respectively), the subunits of which appear to define the operational pathways. Rapamycin selectively targets mTORC1 function, and the emergence of specific ATP-competitive kinase inhibitors has enabled assessment of dual mTORC1 and mTORC2 blockade. Little is known, however, of the molecular action of mTORC2 components or the relative importance of targeting this pathway. In the present study, we have identified the mTORC2 subunit Sin1 as a direct binding partner of the PKC (protein kinase C) ε kinase domain and map the interaction to the central highly conserved region of Sin1. Exploiting the conformational dependence for PKC phosphorylation, we demonstrate that mTORC2 is essential for acute priming of PKC. Inducible expression of Sin1 mutants, lacking the PKC-interaction domain, displaces endogenous Sin1 from mTORC2 and disrupts PKC phosphorylation. PKB (protein kinase B)/Akt phosphorylation is also suppressed by these Sin1 mutants, but not the mTORC1 substrate p70(S6K) (S6 kinase), providing evidence that Sin1 serves as a selectivity adaptor for the recruitment of mTORC2 targets. This inducible selective mTORC2 intervention is used to demonstrate a key role for mTORC2 in cell proliferation in three-dimensional culture.
Sarcoma | 2013
Juan Martin-Liberal; Salma Alam; Anastasia Constantinidou; Cyril Fisher; Komel Khabra; Christina Messiou; David Olmos; Scott Mitchell; Omar Al-Muderis; Aisha Miah; Mark Linch; Robin L. Jones; Michelle Scurr; Ian Judson; Charlotte Benson
Background. Soft-tissue sarcomas (STS) are a heterogeneous group of diseases with lack of effective treatments in most cases. Previous data suggest that continuous infusional ifosfamide regimens might improve cytotoxicity and tolerability compared to standard schedules. Methods. We retrospectively report the outcome of 35 patients affected by STS treated with a 14-day infusional ifosfamide regimen (1000 mg/m2/day) in our institution. Predictive factors for toxicity were also explored. Results. Median age was 53 years. There were 16 males and 19 females. Classification by histology was dedifferentiated liposarcoma (DDLPS): 22 (62.8%), synovial sarcoma: 7 (20%), myxoid/round-cell liposarcoma: 3 (8.5%), and others: 3 (8.5%). Overall, 7 patients (20%) achieved partial response (PR) and 10 patients (29%) achieved stable disease (SD). DDLPS showed special sensitivity: 5 patients (22.7%) had PR, 7 patients (31.8%) had SD, and disease control rate was 54.5%. Median progression-free survival and overall survival were 4.2 and 11.2 months, respectively. The most common toxicities were fatigue, nausea, and vomiting (all grades: 85.7%, 83%, and 54.3%, resp.). Neither hypoalbuminaemia nor gender was found to predict toxicity, although encephalopathy predominantly affected females. Conclusion. Ifosfamide administered as a 14-day continuous infusion is a safe regimen in STS with notable activity in DDLPS.
Journal of Cell Science | 2012
Carine Rossé; Katrina Boeckeler; Mark Linch; Simone Radtke; David Frith; Karin Barnouin; Ali Sayed Morsi; Majid Hafezparast; Michael Howell; Peter J. Parker
Summary In migrating NRK cells, aPKCs control the dynamics of turnover of paxillin-containing focal adhesions (FA) determining migration rate. Using a proteomic approach (two-dimensional fluorescence difference gel electrophoresis), dynein intermediate chain 2 (dynein IC2) was identified as a protein that is phosphorylated inducibly during cell migration in a PKC-regulated manner. By gene silencing and co-immunoprecipitation studies, we show that dynein IC2 regulates the speed of cell migration through its interaction with paxillin. This interaction is controlled by serine 84 phosphorylation, which lies on the aPKC pathway. The evidence presented thus links aPKC control of migration to the dynein control of FA turnover through paxillin.
Developmental Cell | 2016
Erika Soriano; Marina E. Ivanova; Georgina Fletcher; Philippe Riou; Philip P. Knowles; Karin Barnouin; Andrew Purkiss; Brenda Kostelecky; Peter Saiu; Mark Linch; Ahmed Elbediwy; Svend Kjær; Nicola O’Reilly; Ambrosius P. Snijders; Peter J. Parker; Barry J. Thompson; Neil Q. McDonald
Summary Atypical protein kinase C (aPKC) is a key apical-basal polarity determinant and Par complex component. It is recruited by Par3/Baz (Bazooka in Drosophila) into epithelial apical domains through high-affinity interaction. Paradoxically, aPKC also phosphorylates Par3/Baz, provoking its relocalization to adherens junctions (AJs). We show that Par3 conserved region 3 (CR3) forms a tight inhibitory complex with a primed aPKC kinase domain, blocking substrate access. A CR3 motif flanking its PKC consensus site disrupts the aPKC kinase N lobe, separating P-loop/αB/αC contacts. A second CR3 motif provides a high-affinity anchor. Mutation of either motif switches CR3 to an efficient in vitro substrate by exposing its phospho-acceptor site. In vivo, mutation of either CR3 motif alters Par3/Baz localization from apical to AJs. Our results reveal how Par3/Baz CR3 can antagonize aPKC in stable apical Par complexes and suggests that modulation of CR3 inhibitory arms or opposing aPKC pockets would perturb the interaction, promoting Par3/Baz phosphorylation.
Carcinogenesis | 2014
Mark Linch; Marta Sanz-Garcia; Carine Rossé; Philippe Riou; Nick Peel; Chris D. Madsen; Erik Sahai; Julian Downward; Asim Khwaja; Christian Dillon; Jon Roffey; Angus J.M. Cameron; Peter J. Parker
Protein kinase C iota (PKCι), a serine/threonine kinase required for cell polarity, proliferation and migration, is commonly up- or downregulated in cancer. PKCι is a human oncogene but whether this is related to its role in cell polarity and what repertoire of oncogenes acts in concert with PKCι is not known. We developed a panel of candidate oncogene expressing Madin-Darby canine kidney (MDCK) cells and demonstrated that H-Ras, ErbB2 and phosphatidylinositol 3-kinase transformation led to non-polar spheroid morphogenesis (dysplasia), whereas MDCK spheroids expressing c-Raf or v-Src were largely polarized. We show that small interfering RNA (siRNA)-targeting PKCι decreased the size of all spheroids tested and partially reversed the aberrant polarity phenotype in H-Ras and ErbB2 spheroids only. This indicates distinct requirements for PKCι and moreover that different thresholds of PKCι activity are required for these phenotypes. By manipulating PKCι function using mutant constructs, siRNA depletion or chemical inhibition, we have demonstrated that PKCι is required for polarization of parental MDCK epithelial cysts in a 3D matrix and that there is a threshold of PKCι activity above and below which, disorganized epithelial morphogenesis results. Furthermore, treatment with a novel PKCι inhibitor, CRT0066854, was able to restore polarized morphogenesis in the dysplastic H-Ras spheroids. These results show that tightly regulated PKCι is required for normal-polarized morphogenesis in mammalian cells and that H-Ras and ErbB2 cooperate with PKCι for loss of polarization and dysplasia. The identification of a PKCι inhibitor that can restore polarized morphogenesis has implications for the treatment of Ras and ErbB2 driven malignancies.