Mark M. Kockx
University of Antwerp
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark M. Kockx.
Circulation | 1998
Mark M. Kockx; Guido R.Y. De Meyer; Johannes Muhring; Willem Jacob; Hidde Bult; Arnold G. Herman
BACKGROUND The transition of a fatty streak into an atherosclerotic plaque is characterized by the appearance of focal and diffuse regions of cell death. We have investigated the distribution of apoptotic cell death and apoptosis-related proteins in early and advanced atherosclerotic lesions. METHODS AND RESULTS Human atherosclerotic plaques were studied by whole-mount carotid endarterectomy specimens (n=18). This approach allowed comparison of adaptive intimal thickenings, fatty streaks, and advanced atherosclerotic plaques of the same patient. The fatty streaks differed from adaptive intimal thickenings by the presence of BAX (P<0.01), a proapoptotic protein of the BCL-2 family. Both regions were composed mainly of smooth muscle cells (SMCs), and macrophage infiltration was low and not different. Apoptosis, as detected by DNA in situ end labeling (terminal deoxynucleotidyl transferase end labeling [TUNEL] and in situ nick translation) was not present in these regions. Apoptosis of SMCs and macrophages, however, was present in advanced atherosclerotic plaques that were present mainly in the carotid sinus. A dense infiltration of macrophages (5.8+/-3% surface area) was present in these advanced atherosclerotic plaques. Cytoplasmic remnants of apoptotic SMCs, enclosed by a cage of thickened basal lamina, were TUNEL negative and remained present in the plaques as matrix vesicles. CONCLUSIONS We conclude that SMCs within human fatty streaks express BAX, which increases the susceptibility of these cells to undergo apoptosis. The localization of these susceptible SMCs in the deep layer of the fatty streaks could be important in our understanding of the transition of fatty streaks into atherosclerotic plaques, which are characterized by regions of cell death. Matrix vesicles are BAX-immunoreactive cytoplasmic remnants of fragmented SMCs that can calcify and may be considered the graves of SMCs that have died in the plaques.
Circulation | 2002
Wim Martinet; Michiel Knaapen; Guido R.Y. De Meyer; Arnold G. Herman; Mark M. Kockx
Background—The formation of reactive oxygen species is a critical event in atherosclerosis because it promotes cell proliferation, hypertrophy, growth arrest, and/or apoptosis and oxidation of LDL. In the present study, we investigated whether reactive oxygen species-induced oxidative damage to DNA occurs in human atherosclerotic plaques and whether this is accompanied by the upregulation of DNA repair mechanisms. Methods and Results—We observed increased immunoreactivity against the oxidative DNA damage marker 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dG) in plaques of the carotid artery compared with the adjacent inner media and nonatherosclerotic mammary arteries. Strong 8-oxo-dG immunoreactivity was found in all cell types of the plaque including macrophages, smooth muscle cells, and endothelial cells. As shown by competitive ELISA, carotid plaques contained 160±29 8-oxo-dG residues/105 dG versus 3±1 8-oxo-dG residues/105 dG in mammary arteries. Single-cell gel electrophoresis showed elevated levels of DNA strand breaks in the plaque. The overall number of apoptotic nuclei was low (1% to 2%) and did not correlate with the amount of 8-oxo-dG immunoreactive cells (>90%). This suggests that initial damage to DNA occurs at a sublethal level. Several DNA repair systems that are involved in base excision repair (redox factor/AP endonuclease [Ref 1] and poly(ADP-ribose) polymerase 1 [PARP-1]) or nonspecific repair pathways (p53, DNA-dependent protein kinase) were upregulated, as shown by Western blotting and immunohistochemistry. Overexpression of DNA repair enzymes was associated with elevated levels of proliferating cell nuclear antigen. Conclusions—Our findings provide evidence that oxidative DNA damage and repair increase significantly in human atherosclerotic plaques.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2005
Dorien M. Schrijvers; Guido R.Y. De Meyer; Mark M. Kockx; Arnold G. Herman; Wim Martinet
Objective—Apoptotic cell death has been demonstrated in advanced human atherosclerotic plaques. Apoptotic cells (ACs) should be rapidly removed by macrophages, otherwise secondary necrosis occurs, which in turn elicits inflammatory responses and plaque progression. Therefore, we investigated the efficiency of phagocytosis of ACs by macrophages in atherosclerosis. Methods and Results—Human endarterectomy specimens and human tonsils were costained for CD68 (macrophages) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) (apoptosis). Free and phagocytized ACs were counted in both tissues. The ratio of free versus phagocytized AC was 19-times higher in human atherosclerotic plaques as compared with human tonsils, indicating a severe defect in clearance of AC. Impaired phagocytosis of AC was also detected in plaques from cholesterol-fed rabbits and did not further change with plaque progression. In vitro experiments with J774 or peritoneal mouse macrophages showed that several factors caused impaired phagocytosis of AC including cytoplasmic overload of macrophages with indigestible material (beads), free radical attack, and competitive inhibition among oxidized red blood cells, oxidized low-density lipoprotein and ACs for the same receptor(s) on the macrophage. Conclusion—Our data demonstrate that phagocytosis of ACs is impaired in atherosclerotic plaques, which is at least partly attributed to oxidative stress and cytoplasmic saturation with indigestible material.
Journal of Clinical Investigation | 2003
Edwin Kanters; Manolis Pasparakis; Marion J. J. Gijbels; Monique N. Vergouwe; Iris Partouns-Hendriks; Remond J.A. Fijneman; Björn E. Clausen; Irmgard Förster; Mark M. Kockx; Klaus Rajewsky; Georg Kraal; Marten H. Hofker; Menno P.J. de Winther
Atherosclerosis is now generally accepted as a chronic inflammatory condition. The transcription factor NF-kappaB is a key regulator of inflammation, immune responses, cell survival, and cell proliferation. To investigate the role of NF-kappaB activation in macrophages during atherogenesis, we used LDL receptor-deficient mice with a macrophage-restricted deletion of IkappaB kinase 2 (IKK2), which is essential for NF-kappaB activation by proinflammatory signals. These mice showed increased atherosclerosis as quantified by lesion area measurements. In addition, the lesions were more advanced and showed more necrosis and increased cell number in early lesions. Southern blotting revealed that deletion of IKK2 was approximately 65% in macrophages, coinciding with a reduction of 50% in NF-kappaB activation, as compared with controls. In both groups, the expression of differentiation markers, uptake of bacteria, and endocytosis of modified LDL was similar. Upon stimulation with LPS, production of TNF was reduced by approximately 50% in IKK2-deleted macrophages. Interestingly, we also found a major reduction in the anti-inflammatory cytokine IL-10. Our data show that inhibition of the NF-kappaB pathway in macrophages leads to more severe atherosclerosis in mice, possibly by affecting the pro- and anti-inflammatory balance that controls the development of atherosclerosis.
Cardiovascular Research | 2000
Mark M. Kockx; Arnold G. Herman
Several groups have demonstrated apoptotic cell death in atherosclerotic plaques. The significance of apoptosis in atherosclerosis depends on the stage of the plaque, localization and the cell types involved. Both macrophages and smooth muscle cells undergo apoptosis in atherosclerotic plaques. Apoptosis of macrophages is mainly present in regions showing signs of DNA synthesis/repair. Smooth muscle cell apoptosis is mainly present in less cellular regions and is not associated with DNA synthesis/repair. Even in early stages of atherosclerosis smooth muscle cells become susceptible to undergoing apoptosis since they increase different pro-apoptotic factors. Moreover, recent data indicate that smooth muscle cells may be killed by activated macrophages. The loss of the smooth muscle cells can be detrimental for plaque stability since most of the interstitial collagen fibers, which are important for the tensile strength of the fibrous cap, are produced by SMC. Apoptosis of macrophages could be beneficial for plaque stability if apoptotic bodies are removed. Apoptotic cells that are not scavenged in the plaque activate thrombin which could further induce intraplaque thrombosis. It can be concluded that apoptosis in the primary atherosclerosis is detrimental since it could lead to plaque rupture and thrombosis. Recent data of our group indicate that apoptosis decreases after lipid lowering which could be important in our understanding of the cell biology of plaque stabilization.
Journal of Clinical Oncology | 2013
Kerstin Trunzer; Anna C. Pavlick; Lynn M. Schuchter; Rene Gonzalez; Grant A. McArthur; Thomas E. Hutson; Stergios J. Moschos; Keith T. Flaherty; Kevin B. Kim; Jeffrey S. Weber; Peter Hersey; Donald P. Lawrence; Patrick A. Ott; Ravi K. Amaravadi; Karl D. Lewis; Igor Puzanov; Roger S. Lo; Astrid Koehler; Mark M. Kockx; Olivia Spleiss; Annette Schell-Steven; Houston Gilbert; Louise Cockey; Gideon Bollag; Richard J. Lee; Andrew K. Joe; Jeffrey A. Sosman; Antoni Ribas
PURPOSE To assess pharmacodynamic effects and intrinsic and acquired resistance mechanisms of the BRAF inhibitor vemurafenib in BRAF(V600)-mutant melanoma, leading to an understanding of the mechanism of action of vemurafenib and ultimately to optimization of metastatic melanoma therapy. METHODS In the phase II clinical study NP22657 (BRIM-2), patients received oral doses of vemurafenib (960 mg twice per day). Serial biopsies were collected to study changes in mitogen-activated protein kinase (MAPK) signaling, cell-cycle progression, and factors causing intrinsic or acquired resistance by immunohistochemistry, DNA sequencing, or somatic mutation profiling. Results Vemurafenib inhibited MAPK signaling and cell-cycle progression. An association between the decrease in extracellular signal-related kinase (ERK) phosphorylation and objective response was observed in paired biopsies (n = 22; P = .013). Low expression of phosphatase and tensin homolog showed a modest association with lower response. Baseline mutations in MEK1(P124) coexisting with BRAF(V600) were noted in seven of 92 samples; their presence did not preclude objective tumor responses. Acquired resistance to vemurafenib associated with reactivation of MAPK signaling as observed by elevated ERK1/2 phosphorylation levels in progressive lesions and the appearance of secondary NRAS(Q61) mutations or MEK1(Q56P) or MEK1(E203K) mutations. These two activating MEK1 mutations had not previously been observed in vivo in biopsies of progressive melanoma tumors. CONCLUSION Vemurafenib inhibits tumor proliferation and oncogenic BRAF signaling through the MAPK pathway. Acquired resistance results primarily from MAPK reactivation driven by the appearance of secondary mutations in NRAS and MEK1 in subsets of patients. The data suggest that inhibition downstream of BRAF should help to overcome acquired resistance.
Cardiovascular Research | 2001
Michiel Knaapen; Michael J. Davies; Martine De Bie; Aldwyn J. Haven; Wim Martinet; Mark M. Kockx
OBJECTIVE Progressive loss of cardiomyocytes is one of the most important pathogenic characteristics of heart failure. Apoptosis may be an important mode of cell death in heart failure but it must be demonstrated by multiple criteria and not just TUNEL staining alone. Previously, we and others have demonstrated that besides apoptosis other phenomena like active gene transcription can result in TUNEL positivity. Moreover, other types of cell death that are caspase-independent could be important in heart failure. This study examined the hypothesis whether TUNEL labeling parallels caspase activation. METHODS Cardiac tissue of patients in the terminal stage of heart failure as a consequence of ischaemic cardiomyopathy (ICM) or dilated cardiomyopathy (DCM) were studied. Embryonic mice hearts were used for positive control for detection of the classical apoptosis. RESULTS In mice embryonic hearts we could clearly find apoptotic cell death detected by TUNEL labeling and immunohistochemistry for activated caspase-3. In heart failure, TUNEL-positive cardiomyocytes were negative for active caspase-3 but showed signs of active gene transcription (SC-35). However, autophagic cell death could be found in 0.3% of the cardiomyocytes. Autophagic cell death was demonstrated by granular cytoplasmic ubiquitin inclusions, an established marker of autophagocytosis in neurons. Interestingly, these autophagic cardiomyocytes were TUNEL and activated caspase-3 negative but were also negative for C9, a marker for necrosis. Western blot analysis confirmed that in cardiomyopathies no cleavage of caspase-3 and caspase-7 occurred. CONCLUSION The present study demonstrates two fundamentally different situations of cell death in cardiac tissue. In embryonic mice, cardiomyocytes undergo caspase-dependent cell death. However, cardiomyocytes in heart failure show caspase-independent autophagic cell death rather than apoptotic cell death.
Cell Death & Differentiation | 2000
Saskia Lippens; Mark M. Kockx; Michiel Knaapen; L Mortier; R Polakowska; An Verheyen; Marjan Garmyn; A Zwijsen; P Formstecher; Danny Huylebroeck; Peter Vandenabeele; Wim Declercq
The epidermis is a stratified squamous epithelium in which keratinocytes progressively undergo terminal differentiation towards the skin surface leading to programmed cell death. In this respect we studied the role of caspases. Here, we show that caspase-14 synthesis in the skin is restricted to differentiating keratinocytes and that caspase-14 processing is associated with terminal epidermal differentiation. The pro-apoptotic executioner caspases-3, -6, and -7 are not activated during epidermal differentiation. Caspase-14 does not participate in apoptotic pathways elicited by treatment of differentiated keratinocytes with various death-inducing stimuli, in contrast to caspase-3. In addition, we show that non-cornifying oral keratinocyte epithelium does not express caspase-14 and that the parakeratotic regions of psoriatic skin lesions contain very low levels of caspase-14 as compared to normal stratum corneum. These observations strongly suggest that caspase-14 is involved in the keratinocyte terminal differentiation program leading to normal skin cornification, while the executioner caspases are not implicated. Cell Death and Differentiation (2000) 7, 1218–1224
Circulation | 2002
Jan H. von der Thüsen; Bart J. M. van Vlijmen; Rob C. Hoeben; Mark M. Kockx; Louis M. Havekes; Theo J.C. van Berkel; Erik A.L. Biessen
Background—The presence of the tumor-suppressor gene p53 in advanced atherosclerotic plaques and the sensitivity to p53-induced cell death of smooth muscle cells isolated from these plaques have fueled speculation about the role of p53 in lesion destabilization and plaque rupture. In this study, we describe a strategy to promote (thrombotic) rupture of preexisting atherosclerotic lesions using p53-induced lesion remodeling. Methods and Results—Carotid atherogenesis was initiated in apolipoprotein E knockout mice by placement of a perivascular silastic collar. The resulting plaques were incubated transluminally with recombinant adenovirus carrying either a p53 or &bgr;-galactosidase (lacZ) transgene. p53 transfection was restricted to the smooth muscle cell-rich cap of the plaque and led to an increase in cap cell apoptosis 1 day after transfer. p53 overexpression resulted in a marked decrease in the cellular and extracellular content of the cap, reflected by a markedly reduced cap/intima ratio (0.21±0.04 versus 0.46±0.03, P <0.001). The latter is a characteristic feature of plaque vulnerability to rupture, and whereas spontaneous rupture of p53-treated lesions was rare, it was found in 40% of cases after treatment with the vasopressor compound phenylephrine (P =0.003). Conclusions—We have demonstrated a potential role of p53-induced remodeling in atherosclerotic plaque destabilization. Being the first example of inducible rupture at a predefined location, this model offers a unique opportunity to delineate the processes that precede rupture and to evaluate plaque-stabilizing therapies.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2003
Mark M. Kockx; Kristel M. Cromheeke; Michiel Knaapen; Johan Bosmans; Guido R.Y. De Meyer; Arnold G. Herman; Hidde Bult
Objective—Previously, we demonstrated that activated inducible NO synthase (iNOS)-expressing foam cells in human carotid plaques often produce autofluorescent (per)oxidized lipids (ceroid). Here, we investigate whether intraplaque microvessels can provide foam cells with lipids and trigger macrophage activation. Methods and Results—Microvessels (von Willebrand factor [vWf] immunoreactivity), activated macrophages (iNOS immunoreactivity), and ceroid were systematically mapped in longitudinal sections of 15 human carotid endarterectomy specimens. An unbiased hierarchical cluster analysis classified vascular regions into 2 categories. One type with normal vWf expression and without inflammatory cells was seen, and another type with cuboidal endothelial cells, perivascular vWf deposits, and iNOS and ceroid-containing foam cells was seen in 4 (27%) of 15 plaques. The perivascular foam cells frequently contained platelets (glycoprotein Ib&agr;) and erythrocytes (hemoglobin, iron), pointing to microhemorrhage/thrombosis and subsequent phagocytosis. Similar lipid-containing cells, expressing both ceroid and iNOS, were generated in atherosclerosis-free settings by incubating murine J774 macrophages with platelets or oxidized erythrocytes and also in vivo in organizing thrombi in normocholesterolemic rabbits. Conclusions—Focal intraplaque microhemorrhages initiate platelet and erythrocyte phagocytosis, leading to iron deposition, macrophage activation, ceroid production, and foam cell formation. Neovascularization, besides supplying plaques with leukocytes and lipoproteins, can thus promote focal plaque expansion when microvessels become thrombotic or rupture prone.