Mark M. Voigt
Saint Louis University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark M. Voigt.
Journal of Biological Chemistry | 1999
Gonzalo E. Torres; Terrance M. Egan; Mark M. Voigt
P2X receptors are a distinct family of ligand-gated ion channels activated by extracellular ATP. Each of the seven identified subunit proteins (P2X1 through P2X7) has been reported to form functional homo-oligomeric channels when expressed in heterologous systems. Functional studies of native receptors, together with patterns of subunit gene expression, suggest that hetero-oligomeric assembly among members of this family may also occur. This prediction is supported by reports describing hetero-oligomeric assembly for three different recombinant subunit combinations. In this report, we systematically examined the ability of all members of the P2X receptor family to interact using a co-immunoprecipitation assay. The seven P2X receptor subunits were differentially epitope-tagged and expressed in various combinations in human embryonic kidney 293 cells. It was found that six of the seven subunits formed homo-oligomeric complexes, the exception being P2X6. When co-assembly between pairs of subunits was examined, all were able to form hetero-oligomeric assemblies with the exception of P2X7. Whereas P2X1, P2X2, P2X5, and P2X6 were able to assemble with most subunits, P2X3 and P2X4presented a more restricted pattern of co-association. These results suggest that hetero-oligomeric assembly might underlie functional discrepancies observed between P2X responses seen in the native and recombinant settings, while providing for an increased diversity of signaling by ATP.
Neuroscience | 2003
Sarah Kucenas; Zhiyuan Li; Jane A. Cox; Terrance M. Egan; Mark M. Voigt
P2X receptors are non-selective cation channels gated by extracellular ATP and are encoded by a family of seven subunit genes in mammals. These receptors exhibit high permeabilities to calcium and in the mammalian nervous system they have been linked to modulation of neurotransmitter release. Previously, three complementary DNAs (cDNAs) encoding members of the zebrafish gene family have been described. We report here the cloning and characterization of an additional six genes of this family. Sequence analysis of all nine genes suggests that six are orthologs of mammalian genes, two are paralogs of previously described zebrafish subunits, and one remains unclassified. All nine subunits were physically mapped onto the zebrafish genome using radiation hybrid analysis. Of the nine gene products, seven give functional homo-oligomeric receptors when recombinantly expressed in human embryonic kidney cell line 293 cells. In addition, these subunits can form hetero-oligomeric receptors with phenotypes distinct from the parent subunits. Analysis of gene expression patterns was carried out using in situ hybridization, and seven of the nine genes were found to be expressed in embryos at 24 and 48 h post-fertilization. Of the seven that were expressed, six were present in the nervous system and four of these demonstrated considerable overlap in cells present in the sensory nervous system. These results suggest that P2X receptors might play a role in the early development and/or function of the sensory nervous system in vertebrates.
Brain Research | 1984
Mark M. Voigt; Rex Y. Wang
We observed that the release of endogenous dopamine (DA), induced by perfusion of a 55 mM K+-containing buffer in the nucleus accumbens, was Ca2+-dependent and confined to a local region. We also demonstrated that the sulphated form of cholecystokinin octapeptide, but not the unsulphated form, suppressed this stimulated release of dopamine in a concentration-dependent manner. This suggests that cholecystokinin may act as a functional antagonist to dopamine within this structure.
Journal of Biological Chemistry | 1999
Gonzalo E. Torres; Terrance M. Egan; Mark M. Voigt
P2X receptors are ATP-gated ion channels found in a variety of tissues and cell types. Seven different subunits (P2X1-P2X7) have been molecularly cloned and are known to form homomeric, and in some cases heteromeric, channel complexes. However, the molecular determinants leading to the assembly of subunits into P2X receptors are unknown. To address this question we utilized a co-immunoprecipitation assay in which epitope-tagged deletion mutants and chimeric constructs were examined for their ability to co-associate with full-length P2X subunits. Deletion mutants of the P2X2 receptor subunit were expressed individually and together with P2X2 or P2X3 receptor subunits in HEK 293 cells. Deletion of the amino terminus up to the first transmembrane domain (amino acid 28) and beyond (to amino acid 51) did not prevent subunit assembly. Analysis of the carboxyl terminus demonstrated that mutants missing the portion of the protein downstream of the second transmembrane domain could also still co-assemble. However, a mutant terminating 25 amino acids before the second transmembrane domain could not assemble with other subunits or itself, implicating the missing region of the protein in assembly. This finding was supported and extended by data utilizing a chimera strategy that indicated TMD2 is a critical determinant of P2X subunit assembly.
FEBS Letters | 1998
Gonzalo E. Torres; Terrance M. Egan; Mark M. Voigt
We investigated the transmembrane topology of the P2X2 receptor subunit expressed in HEK 293 cells. Initial studies using two P2X subunits expressed in tandem indicated that the amino‐ and carboxy‐termini are on the same side of the membrane. Immunofluorescence studies showed the cytoplasmic orientation of the amino‐ and carboxy‐termini. Finally, N‐glycosylation scanning mutagenesis revealed that reporter sites inserted into the central loop, but not those in the amino‐ or carboxy‐terminal regions, were glycosylated, thus suggesting an extracellular placement for that domain. Our results support a two‐transmembrane arrangement for P2X receptors with intracellular amino‐ and carboxy‐termini.
Trends in Pharmacological Sciences | 1984
Rex Y. Wang; Francis J. White; Mark M. Voigt
Abstract Recent findings indicate a close functional interrelationship between dopaminergic systems and cholecystokinin (CCK) in certain brain regions and suggest that CCK may have a role in the pathogenesis of schizophrenia and in the therapeutic actions of antipsychotic drugs. Supportive evidence includes the observations that (1) Compared to normals, CCK concentrations in certain brain regions are significantly lower in untreated schizophrenics; (2) CCK may exert antipsychotic actions in some schizophrenic patients; (3) chronic antipsychotic drug treatments increase CCK concentrations and the number of CCK receptors; and (4) CCK appears to antagonize dopamine functions in the ventral tegment-dopamine system.
Developmental Dynamics | 2005
Jane A. Cox; Sarah Kucenas; Mark M. Voigt
We present the cloning of 10 N‐methyl‐D‐aspartate (NMDA) receptor subunits from the zebrafish. These subunits fall into five subtypes, each containing two paralogous genes. Thus, we report two NMDAR1 genes (NR1.1 and NR1.2), and eight NMDAR2 genes, designated NR2A.1 and NR2A.2, NR2B.1 and NR2B.2, NR2C.1 and NR2C.2, and NR2D.1 and NR2D.2. The predicted sequences of the NR1 paralogs display 90% identity to the human protein. The NR2 subunits show less identity, differing most at the N‐ and C‐termini. The NR1 genes are both expressed embryonically, although in a nonidentical manner. NR1.1 is found in brain, retina, and spinal cord at 24 hours postfertilization (hpf). NR1.2 is expressed in the brain at 48 hpf but not in the spinal cord. NR2 developmental gene expression varies: both paralogs of the NR2A are expressed at 48 hpf in the retina, only one paralog of the NR2B is expressed at low levels in the heart at 48 hpf. Neither of the NR2C is expressed embryonically. Both paralogs of the NR2D are expressed: 2D.1 is in the forebrain, retina, and spinal cord at 24 hpf, whereas the 2D.2 is only found in the retina. Our findings demonstrate that the zebrafish can serve as a useful model system for investigating the role of NMDA receptors in the development of the nervous system. Developmental Dynamics 234:756–766, 2005.
The Journal of Neuroscience | 2004
Zhiyuan Li; Keisuke Migita; Damien S. K. Samways; Mark M. Voigt; Terrance M. Egan
ATP opens ionotropic P2X channels through a process that is poorly understood. We made an array of mutant rat P2X2 channels containing unique alanine substitutions in the transmembrane segments with the goal of identifying possible secondary structure and mapping gating domains in the pore. Alteration of channel function was measured as a change in ATP potency, 2′-3′-O-(4-benzoylbenzoyl)ATP (BzATP) efficacy, and deactivation kinetics. Four mutants (V45A, Y47A, V51A, and D349A) failed to respond to ATP. Seven (H33A, Q37A, I40A, L41A, Y43A, F44A, and I50A) of 22 mutations in the first transmembrane segment (TM1) produced channels with altered potencies, and two mutants (Y43A and F44A) were active in the absence of agonist. The pattern of hits was consistent with a helical secondary structure. In contrast, nine (I328A, P329A, N333A, L338A, T339A, S340A, G342A, G344A, and S345A) of 24 mutations in the second transmembrane segment (TM2) resulted in a change in potency, but no regular pattern of impact was apparent. Many of the same mutations that altered ATP potency also changed the relative efficacy of the partial agonist BzATP. Together, these data suggest that both TM1 and TM2 participate in the conformational changes that occur during receptor activation and help to define domains involved in conformational switching within or near the pore.
The Journal of Neuroscience | 2005
Emily B. Pratt; Thaddeus S. Brink; Pamela Bergson; Mark M. Voigt; Sean P. Cook
P2X3 receptors desensitize within 100 ms of channel activation, yet recovery from desensitization requires several minutes. The molecular basis for this slow rate of recovery is unknown. We designed experiments to test the hypothesis that this slow recovery is attributable to the high affinity (< 1 nm) of desensitized P2X3 receptors for agonist. We found that agonist binding to the desensitized state provided a mechanism for potent inhibition of P2X3 current. Sustained applications of 0.5 nm ATP inhibited >50% of current to repetitive applications of P2X3 agonist. Inhibition occurred at 1000-fold lower agonist concentrations than required for channel activation and showed strong use dependence. No inhibition occurred without previous activation and desensitization. Our data are consistent with a model whereby inhibition of P2X3 by nanomolar [agonist] occurs by the rebinding of agonist to desensitized channels before recovery from desensitization. For several ATP analogs, the concentration required to inhibit P2X3 current inversely correlated with the rate of recovery from desensitization. This indicates that the affinity of the desensitized state and recovery rate primarily depend on the rate of agonist unbinding. Consistent with this hypothesis, unbinding of [32P]ATP from desensitized P2X3 receptors mirrored the rate of recovery from desensitization. As expected, disruption of agonist binding by site-directed mutagenesis increased the IC50 for inhibition and increased the rate of recovery.
Biochemical and Biophysical Research Communications | 2002
Miguel Diaz-Hernandez; Jane A. Cox; Keisuke Migita; William R. Haines; Terrance M. Egan; Mark M. Voigt
In this report we describe the cloning and characterization of two P2X receptor subunits cloned from the zebrafish (Danio rerio). Primary sequence analysis suggests that one cDNA encodes an ortholog of the mammalian P2X(4) subunit and the second cDNA encodes the ortholog of the mammalian P2X(5) subunit. The zP2X(4) subunit forms a homo-oligomeric receptor that displays a low affinity for ATP (EC(50)=274+/-48 microM) and very low affinity (EC(50)>500 microM) for other purinergic ligands such as alphabetameATP, suramin, and PPADS. As seen with the mammalian orthologs, the zP2X(5) subunit forms a homo-oligomeric receptor that yields very small whole-cell currents (<20pA), making determination of an EC(50) problematic. Both subunit genes were physically mapped onto the zebrafish genome using radiation hybrid analysis of the T51 panel, with the zp2x4 localized to LG21 and zp2x5 to LG5.